Components of yeast cell walls, such as β-glucans and mannoproteins, show promise for developing sustainable biopolymers for food packaging. Efficient extraction, however, is challenging due to the complexity of the yeast cell wall. This study explored high-pressure homogenisation (HPH) and pulsed electric fields (PEFs), alone and with heat treatment (TT), on bakery yeast (BY) and brewery spent yeast (BSY) biomasses. In the treated samples we assessed carbohydrates, proteins, β-glucans, and mannoproteins and evaluated cell wall disruption microscopically. HPH caused complete cell disintegration, enhancing intracellular release, while PEF primarily permeabilised the membranes. Combined HPH and PEF treatments significantly increased cell wall stress, leading to partial disintegration. Notably, the β-glucans released reached 3.90 g/100 g dry matter in BY and 10.44 g/100 g dry matter in BSY, demonstrating significant extraction improvements. These findings highlight the potential of HPH and PEF for enhancing β-glucan recovery from yeast biomass, offering a promising route for sustainable biopolymer production for food packaging.
Ciccone, M., Khan, M.R., MOLINA HERNANDEZ, J.B., Njieukam, J.A., Siroli, L., Gottardi, D., et al. (2024). Release of biopolymers from Saccharomyces cerevisiae biomass through thermal and non-thermal technologies. MICROORGANISMS, 12(12), 1-19 [10.3390/microorganisms12122596].
Release of biopolymers from Saccharomyces cerevisiae biomass through thermal and non-thermal technologies
Marianna Ciccone
;Muhammad Rehan Khan;Junior Bernardo Molina Hernandez;Joel Armando Njieukam;Lorenzo Siroli;Davide Gottardi;Rosalba Lanciotti;Pietro Rocculi;Francesca Patrignani
2024
Abstract
Components of yeast cell walls, such as β-glucans and mannoproteins, show promise for developing sustainable biopolymers for food packaging. Efficient extraction, however, is challenging due to the complexity of the yeast cell wall. This study explored high-pressure homogenisation (HPH) and pulsed electric fields (PEFs), alone and with heat treatment (TT), on bakery yeast (BY) and brewery spent yeast (BSY) biomasses. In the treated samples we assessed carbohydrates, proteins, β-glucans, and mannoproteins and evaluated cell wall disruption microscopically. HPH caused complete cell disintegration, enhancing intracellular release, while PEF primarily permeabilised the membranes. Combined HPH and PEF treatments significantly increased cell wall stress, leading to partial disintegration. Notably, the β-glucans released reached 3.90 g/100 g dry matter in BY and 10.44 g/100 g dry matter in BSY, demonstrating significant extraction improvements. These findings highlight the potential of HPH and PEF for enhancing β-glucan recovery from yeast biomass, offering a promising route for sustainable biopolymer production for food packaging.File | Dimensione | Formato | |
---|---|---|---|
Release of biopolymers.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
780.56 kB
Formato
Adobe PDF
|
780.56 kB | Adobe PDF | Visualizza/Apri |
microorganisms-3343782-supplementary.pdf
accesso aperto
Tipo:
File Supplementare
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
3.97 MB
Formato
Adobe PDF
|
3.97 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.