Sub-lethal high-pressure homogenization treatments applied to Lactobacillus paracasei A13 demonstrated to be a useful strategy to enhance technological and functional properties without detrimental effects on the viability of this strain. Modification of membrane fatty acid composition is reported to be the main regulatory mechanisms adopted by probiotic lactobacilli to counteract high-pressure stress. This work is aimed to clarify and understand the relationship between the modification of membrane fatty acid composition and the expression of genes involved in fatty acid biosynthesis in Lactobacillus paracasei A13, before and after the application of different sub-lethal hyperbaric treatments. Our results showed that Lactobacillus paracasei A13 activated a series of reactions aimed to control and stabilize membrane fluidity in response to high-pressure homogenization treatments. In fact, the production of cyclic fatty acids was counterbalanced by the unsaturation and elongation of fatty acids. The gene expression data indicate an up-regulation of the genes accA, accC, fabD, fabH and fabZ after high-pressure homogenization treatment at 150 and 200 MPa, and of fabK and fabZ after a treatment at 200 MPa suggesting this regulation of the genes involved in fatty acids biosynthesis as an immediate response mechanism adopted by Lactobacillus paracasei A13 to high-pressure homogenization treatments to balance the membrane fluidity. Although further studies should be performed to clarify the modulation of phospholipids and glycoproteins biosynthesis since they play a crucial role in the functional properties of the probiotic strains, this study represents an important step towards understanding the response mechanisms of Lactobacillus paracasei A13 to sub-lethal high-pressure homogenization treatments.

Lactobacillus paracasei A13 and high-pressure homogenization stress response / Siroli L.; Braschi G.; Rossi S.; Gottardi D.; Patrignani F.; Lanciotti R.. - In: MICROORGANISMS. - ISSN 2076-2607. - STAMPA. - 8:3(2020), pp. 439.1-439.15. [10.3390/microorganisms8030439]

Lactobacillus paracasei A13 and high-pressure homogenization stress response

Siroli L.
Methodology
;
Braschi G.
Software
;
Rossi S.
Data Curation
;
Gottardi D.
Methodology
;
Patrignani F.
Writing – Original Draft Preparation
;
Lanciotti R.
Conceptualization
2020

Abstract

Sub-lethal high-pressure homogenization treatments applied to Lactobacillus paracasei A13 demonstrated to be a useful strategy to enhance technological and functional properties without detrimental effects on the viability of this strain. Modification of membrane fatty acid composition is reported to be the main regulatory mechanisms adopted by probiotic lactobacilli to counteract high-pressure stress. This work is aimed to clarify and understand the relationship between the modification of membrane fatty acid composition and the expression of genes involved in fatty acid biosynthesis in Lactobacillus paracasei A13, before and after the application of different sub-lethal hyperbaric treatments. Our results showed that Lactobacillus paracasei A13 activated a series of reactions aimed to control and stabilize membrane fluidity in response to high-pressure homogenization treatments. In fact, the production of cyclic fatty acids was counterbalanced by the unsaturation and elongation of fatty acids. The gene expression data indicate an up-regulation of the genes accA, accC, fabD, fabH and fabZ after high-pressure homogenization treatment at 150 and 200 MPa, and of fabK and fabZ after a treatment at 200 MPa suggesting this regulation of the genes involved in fatty acids biosynthesis as an immediate response mechanism adopted by Lactobacillus paracasei A13 to high-pressure homogenization treatments to balance the membrane fluidity. Although further studies should be performed to clarify the modulation of phospholipids and glycoproteins biosynthesis since they play a crucial role in the functional properties of the probiotic strains, this study represents an important step towards understanding the response mechanisms of Lactobacillus paracasei A13 to sub-lethal high-pressure homogenization treatments.
2020
Lactobacillus paracasei A13 and high-pressure homogenization stress response / Siroli L.; Braschi G.; Rossi S.; Gottardi D.; Patrignani F.; Lanciotti R.. - In: MICROORGANISMS. - ISSN 2076-2607. - STAMPA. - 8:3(2020), pp. 439.1-439.15. [10.3390/microorganisms8030439]
Siroli L.; Braschi G.; Rossi S.; Gottardi D.; Patrignani F.; Lanciotti R.
File in questo prodotto:
File Dimensione Formato  
89_Siroli et al 2020 microorganisms.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 573.02 kB
Formato Adobe PDF
573.02 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/764938
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 16
social impact