The knowledge of protein–protein interaction sites (PPIs) is crucial for protein functional annotation. Here we address the problem focusing on the prediction of putative PPIs considering as input protein sequences. The issue is important given the huge volume of protein sequences compared to experimental and/or computed structures. Taking advantage of protein language models, recently developed, and Deep Neural networks, here we describe ISPRED-SEQ, which overpasses state-of-the-art predictors addressing the same problem. ISPRED-SEQ is freely available for testing at https://ispredws.biocomp.unibo.it.

Manfredi M., Savojardo C., Martelli P.L., Casadio R. (2023). ISPRED-SEQ: Deep Neural Networks and Embeddings for Predicting Interaction Sites in Protein Sequences. JOURNAL OF MOLECULAR BIOLOGY, 435(14), 167963-167971 [10.1016/j.jmb.2023.167963].

ISPRED-SEQ: Deep Neural Networks and Embeddings for Predicting Interaction Sites in Protein Sequences

Manfredi M.
Co-primo
;
Savojardo C.
Co-primo
;
Martelli P. L.
Penultimo
;
Casadio R.
Ultimo
2023

Abstract

The knowledge of protein–protein interaction sites (PPIs) is crucial for protein functional annotation. Here we address the problem focusing on the prediction of putative PPIs considering as input protein sequences. The issue is important given the huge volume of protein sequences compared to experimental and/or computed structures. Taking advantage of protein language models, recently developed, and Deep Neural networks, here we describe ISPRED-SEQ, which overpasses state-of-the-art predictors addressing the same problem. ISPRED-SEQ is freely available for testing at https://ispredws.biocomp.unibo.it.
2023
Manfredi M., Savojardo C., Martelli P.L., Casadio R. (2023). ISPRED-SEQ: Deep Neural Networks and Embeddings for Predicting Interaction Sites in Protein Sequences. JOURNAL OF MOLECULAR BIOLOGY, 435(14), 167963-167971 [10.1016/j.jmb.2023.167963].
Manfredi M.; Savojardo C.; Martelli P.L.; Casadio R.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0022283623000190-main.pdf

accesso aperto

Descrizione: Main document
Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale (CCBYNC)
Dimensione 828.45 kB
Formato Adobe PDF
828.45 kB Adobe PDF Visualizza/Apri
1-s2.0-S0022283623000190-mmc1(2).docx

accesso aperto

Descrizione: Supplementary materials
Tipo: File Supplementare
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale (CCBYNC)
Dimensione 19.09 kB
Formato Microsoft Word XML
19.09 kB Microsoft Word XML Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/939933
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact