The knowledge of protein–protein interaction sites (PPIs) is crucial for protein functional annotation. Here we address the problem focusing on the prediction of putative PPIs considering as input protein sequences. The issue is important given the huge volume of protein sequences compared to experimental and/or computed structures. Taking advantage of protein language models, recently developed, and Deep Neural networks, here we describe ISPRED-SEQ, which overpasses state-of-the-art predictors addressing the same problem. ISPRED-SEQ is freely available for testing at https://ispredws.biocomp.unibo.it.
Manfredi M., Savojardo C., Martelli P.L., Casadio R. (2023). ISPRED-SEQ: Deep Neural Networks and Embeddings for Predicting Interaction Sites in Protein Sequences. JOURNAL OF MOLECULAR BIOLOGY, 435(14), 167963-167971 [10.1016/j.jmb.2023.167963].
ISPRED-SEQ: Deep Neural Networks and Embeddings for Predicting Interaction Sites in Protein Sequences
Manfredi M.Co-primo
;Savojardo C.Co-primo
;Martelli P. L.
Penultimo
;Casadio R.Ultimo
2023
Abstract
The knowledge of protein–protein interaction sites (PPIs) is crucial for protein functional annotation. Here we address the problem focusing on the prediction of putative PPIs considering as input protein sequences. The issue is important given the huge volume of protein sequences compared to experimental and/or computed structures. Taking advantage of protein language models, recently developed, and Deep Neural networks, here we describe ISPRED-SEQ, which overpasses state-of-the-art predictors addressing the same problem. ISPRED-SEQ is freely available for testing at https://ispredws.biocomp.unibo.it.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0022283623000190-main.pdf
accesso aperto
Descrizione: Main document
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale (CCBYNC)
Dimensione
828.45 kB
Formato
Adobe PDF
|
828.45 kB | Adobe PDF | Visualizza/Apri |
1-s2.0-S0022283623000190-mmc1(2).docx
accesso aperto
Descrizione: Supplementary materials
Tipo:
File Supplementare
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale (CCBYNC)
Dimensione
19.09 kB
Formato
Microsoft Word XML
|
19.09 kB | Microsoft Word XML | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.