A TCAD approach for the investigation of charge transport in thick amorphous silicon dioxide is presented for the first time. Thick oxides are investigated representing the best candidates for integrated galvanic insulators in future power applications. The large electric fields, such devices experience and the preexisting defects in the amorphous material, give rise to a leakage current, which leads to degradation and failure. Hence, it is crucial to have a complete understanding of the main physical mechanisms responsible for the charge transport in amorphous silicon oxide. For this reason, metal-insulator-metal structures have been experimentally characterized at different high-field stress conditions and a TCAD approach has been implemented in order to gain insight into the microscopic physical mechanisms responsible for the leakage current. In particular, the role of charge injection at contacts and charge build-up due to trapping-detrapping mechanisms in the bulk of the oxide layer has been investigated and modeled to the purpose of understanding the oxide behavior under dc- and ac-stress conditions. Numerical simulations have been compared against experiments to quantitatively validate the proposed approach.

Novel TCAD Approach for the Investigation of Charge Transport in Thick Amorphous SiO2 Insulators

Giuliano F.
Primo
;
Reggiani S.;Gnani E.;Gnudi A.;
2021

Abstract

A TCAD approach for the investigation of charge transport in thick amorphous silicon dioxide is presented for the first time. Thick oxides are investigated representing the best candidates for integrated galvanic insulators in future power applications. The large electric fields, such devices experience and the preexisting defects in the amorphous material, give rise to a leakage current, which leads to degradation and failure. Hence, it is crucial to have a complete understanding of the main physical mechanisms responsible for the charge transport in amorphous silicon oxide. For this reason, metal-insulator-metal structures have been experimentally characterized at different high-field stress conditions and a TCAD approach has been implemented in order to gain insight into the microscopic physical mechanisms responsible for the leakage current. In particular, the role of charge injection at contacts and charge build-up due to trapping-detrapping mechanisms in the bulk of the oxide layer has been investigated and modeled to the purpose of understanding the oxide behavior under dc- and ac-stress conditions. Numerical simulations have been compared against experiments to quantitatively validate the proposed approach.
Giuliano F.; Reggiani S.; Gnani E.; Gnudi A.; Rossetti M.; Depetro R.; Croce G.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/851993
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 4
social impact