There is growing evidence that the sequence variation of mitochondrial DNA (mtDNA), which clusters in population- and/or geographic-specific haplogroups, may result in functional effects that, in turn, become relevant in disease predisposition or protection, interaction with environmental factors and ultimately in modulating longevity. To unravel functional differences between mtDNA haplogroups we here employed transmitochondrial cytoplasmic hybrid cells (cybrids) grown in galactose medium, a culture condition that forces oxidative phosphorylation, and in the presence of rotenone, the classic inhibitor of respiratory Complex I. Under this experimental paradigm we assessed functional parameters such as cell viability and respiration, ATP synthesis, reactive oxygen species production and mtDNA copy number. Our analyses show that haplogroup J1, which is common in western Eurasian populations, is the most sensitive to rotenone, whereas K1 mitogenomes orchestrate the best compensation, possibly because of the haplogroup-specific missense variants impinging on Complex I function. Remarkably, haplogroups J1 and K1 fit the genetic associations previously established with Leber's hereditary optic neuropathy (LHON) for J1, as a penetrance enhancer, and with Parkinson's disease (PD) for K1, as a protective background. Our findings provide functional evidences supporting previous well-established genetic associations of specific haplogroups with two neurodegenerative pathologies, LHON and PD. Our experimental paradigm is instrumental to highlighting the subtle functional differences characterizing mtDNA haplogroups, which will be increasingly needed to dissect the role of mtDNA genetic variation in health, disease and longevity.

Strobbe, D., Caporali, L., Iommarini, L., Maresca, A., Montopoli, M., Martinuzzi, A., et al. (2018). Haplogroup J mitogenomes are the most sensitive to the pesticide rotenone: Relevance for human diseases. NEUROBIOLOGY OF DISEASE, 114, 129-139 [10.1016/j.nbd.2018.02.010].

Haplogroup J mitogenomes are the most sensitive to the pesticide rotenone: Relevance for human diseases

Caporali, Leonardo
Methodology
;
Iommarini, Luisa
Methodology
;
Maresca, Alessandra
Methodology
;
MARTINUZZI, ANDREA
Membro del Collaboration Group
;
Carelli, Valerio
Conceptualization
;
Ghelli, Anna
Conceptualization
2018

Abstract

There is growing evidence that the sequence variation of mitochondrial DNA (mtDNA), which clusters in population- and/or geographic-specific haplogroups, may result in functional effects that, in turn, become relevant in disease predisposition or protection, interaction with environmental factors and ultimately in modulating longevity. To unravel functional differences between mtDNA haplogroups we here employed transmitochondrial cytoplasmic hybrid cells (cybrids) grown in galactose medium, a culture condition that forces oxidative phosphorylation, and in the presence of rotenone, the classic inhibitor of respiratory Complex I. Under this experimental paradigm we assessed functional parameters such as cell viability and respiration, ATP synthesis, reactive oxygen species production and mtDNA copy number. Our analyses show that haplogroup J1, which is common in western Eurasian populations, is the most sensitive to rotenone, whereas K1 mitogenomes orchestrate the best compensation, possibly because of the haplogroup-specific missense variants impinging on Complex I function. Remarkably, haplogroups J1 and K1 fit the genetic associations previously established with Leber's hereditary optic neuropathy (LHON) for J1, as a penetrance enhancer, and with Parkinson's disease (PD) for K1, as a protective background. Our findings provide functional evidences supporting previous well-established genetic associations of specific haplogroups with two neurodegenerative pathologies, LHON and PD. Our experimental paradigm is instrumental to highlighting the subtle functional differences characterizing mtDNA haplogroups, which will be increasingly needed to dissect the role of mtDNA genetic variation in health, disease and longevity.
2018
Strobbe, D., Caporali, L., Iommarini, L., Maresca, A., Montopoli, M., Martinuzzi, A., et al. (2018). Haplogroup J mitogenomes are the most sensitive to the pesticide rotenone: Relevance for human diseases. NEUROBIOLOGY OF DISEASE, 114, 129-139 [10.1016/j.nbd.2018.02.010].
Strobbe, Daniela; Caporali, Leonardo; Iommarini, Luisa; Maresca, Alessandra; Montopoli, Monica; Martinuzzi, Andrea; Achilli, Alessandro; Olivieri, Ann...espandi
File in questo prodotto:
File Dimensione Formato  
2018 - Strobbe NeurobDis.pdf

accesso aperto

Descrizione: pdf editoriale
Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 1.56 MB
Formato Adobe PDF
1.56 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/634640
Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 21
social impact