Power device reliability is one of the key challenges of next generation Smart-Power technologies. As a consequence, device performance needs to be optimized accounting for hot-carrier stress degradation issues. To this purpose, numerical simulation tools are commonly used, but the TCAD modeling of performance drifts due to electrical stress is still an open issue. Physics-based analytical models and TCAD based approaches have been proposed and devised for the investigation of the parameter degradation in the linear transport regime and its localization in STI-based LDMOS devices. A thorough investigation of the degradation under high-gate stress biases, corresponding to impact-ionization regimes, is carried out to gain an insight on the overall bias and temperature dependence of the parameter drifts.

Modeling and characterization of hot-carrier stress degradation in power MOSFETs

REGGIANI, SUSANNA;GNANI, ELENA;GNUDI, ANTONIO;BACCARANI, GIORGIO;POLI, STEFANO;
2013

Abstract

Power device reliability is one of the key challenges of next generation Smart-Power technologies. As a consequence, device performance needs to be optimized accounting for hot-carrier stress degradation issues. To this purpose, numerical simulation tools are commonly used, but the TCAD modeling of performance drifts due to electrical stress is still an open issue. Physics-based analytical models and TCAD based approaches have been proposed and devised for the investigation of the parameter degradation in the linear transport regime and its localization in STI-based LDMOS devices. A thorough investigation of the degradation under high-gate stress biases, corresponding to impact-ionization regimes, is carried out to gain an insight on the overall bias and temperature dependence of the parameter drifts.
2013 Proceedings of the European Solid-State Device Research Conference (ESSDERC)
91
94
Reggiani, Susanna; Gnani, Elena; Gnudi, Antonio; Baccarani, Giorgio; Poli, Stefano; Wise, R.; Chuang, M. Y.; Tian, W.; Denison, M.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/351918
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact