Background: The Critical Assessment of Genome Interpretation (CAGI) aims to advance the state-of-the-art for computational prediction of genetic variant impact, particularly where relevant to disease. The fve complete editions of the CAGI community experiment comprised 50 challenges, in which participants made blind predictions of phenotypes from genetic data, and these were evaluated by independent assessors. Results: Performance was particularly strong for clinical pathogenic variants, including some difcult-to-diagnose cases, and extends to interpretation of cancer-related variants. Missense variant interpretation methods were able to estimate biochemical efects with increasing accuracy. Assessment of methods for regulatory variants and complex trait disease risk was less defnitive and indicates performance potentially suitable for auxiliary use in the clinic. Conclusions: Results show that while current methods are imperfect, they have major utility for research and clinical applications. Emerging methods and increasingly la

null, n., Jain, S., Bakolitsa, C., Brenner, S.E., Radivojac, P., Moult, J., et al. (2024). CAGI, the Critical Assessment of Genome Interpretation, establishes progress and prospects for computational genetic variant interpretation methods. GENOME BIOLOGY, 25(1), 1-46 [10.1186/s13059-023-03113-6].

CAGI, the Critical Assessment of Genome Interpretation, establishes progress and prospects for computational genetic variant interpretation methods

Bromberg, Yana;Turina, Paola;Capriotti, Emidio;Carter, Hannah;Babbi, Giulia;Bovo, Samuele;Di Lena, Pietro;Martelli, Pier Luigi;Savojardo, Castrense;Casadio, Rita;Fariselli, Piero;Bellazzi, Riccardo;Zhang, Jing;
2024

Abstract

Background: The Critical Assessment of Genome Interpretation (CAGI) aims to advance the state-of-the-art for computational prediction of genetic variant impact, particularly where relevant to disease. The fve complete editions of the CAGI community experiment comprised 50 challenges, in which participants made blind predictions of phenotypes from genetic data, and these were evaluated by independent assessors. Results: Performance was particularly strong for clinical pathogenic variants, including some difcult-to-diagnose cases, and extends to interpretation of cancer-related variants. Missense variant interpretation methods were able to estimate biochemical efects with increasing accuracy. Assessment of methods for regulatory variants and complex trait disease risk was less defnitive and indicates performance potentially suitable for auxiliary use in the clinic. Conclusions: Results show that while current methods are imperfect, they have major utility for research and clinical applications. Emerging methods and increasingly la
2024
null, n., Jain, S., Bakolitsa, C., Brenner, S.E., Radivojac, P., Moult, J., et al. (2024). CAGI, the Critical Assessment of Genome Interpretation, establishes progress and prospects for computational genetic variant interpretation methods. GENOME BIOLOGY, 25(1), 1-46 [10.1186/s13059-023-03113-6].
null, null; Jain, Shantanu; Bakolitsa, Constantina; Brenner, Steven E.; Radivojac, Predrag; Moult, John; Repo, Susanna; Hoskins, Roger A.; Andreoletti...espandi
File in questo prodotto:
File Dimensione Formato  
CAGI flag 2024.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 6.25 MB
Formato Adobe PDF
6.25 MB Adobe PDF Visualizza/Apri
13059_2023_3113_MOESM1_ESM.docx

accesso aperto

Tipo: File Supplementare
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 5.53 MB
Formato Microsoft Word XML
5.53 MB Microsoft Word XML Visualizza/Apri
13059_2023_3113_MOESM2_ESM.xls

accesso aperto

Tipo: File Supplementare
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 653 kB
Formato Microsoft Excel
653 kB Microsoft Excel Visualizza/Apri
13059_2023_3113_MOESM3_ESM.xlsx

accesso aperto

Tipo: File Supplementare
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 18.09 kB
Formato Microsoft Excel XML
18.09 kB Microsoft Excel XML Visualizza/Apri
13059_2023_3113_MOESM4_ESM.xls

accesso aperto

Tipo: File Supplementare
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 588.5 kB
Formato Microsoft Excel
588.5 kB Microsoft Excel Visualizza/Apri
13059_2023_3113_MOESM5_ESM.xls

accesso aperto

Tipo: File Supplementare
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 28.5 kB
Formato Microsoft Excel
28.5 kB Microsoft Excel Visualizza/Apri
13059_2023_3113_MOESM6_ESM.xls

accesso aperto

Tipo: File Supplementare
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 69.5 kB
Formato Microsoft Excel
69.5 kB Microsoft Excel Visualizza/Apri
13059_2023_3113_MOESM8_ESM.docx

accesso aperto

Tipo: File Supplementare
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 17.44 kB
Formato Microsoft Word XML
17.44 kB Microsoft Word XML Visualizza/Apri
13059_2023_3113_MOESM7_ESM.xls

accesso aperto

Tipo: File Supplementare
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 27 kB
Formato Microsoft Excel
27 kB Microsoft Excel Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/962500
Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 6
social impact