Background: The Critical Assessment of Genome Interpretation (CAGI) aims to advance the state-of-the-art for computational prediction of genetic variant impact, particularly where relevant to disease. The fve complete editions of the CAGI community experiment comprised 50 challenges, in which participants made blind predictions of phenotypes from genetic data, and these were evaluated by independent assessors. Results: Performance was particularly strong for clinical pathogenic variants, including some difcult-to-diagnose cases, and extends to interpretation of cancer-related variants. Missense variant interpretation methods were able to estimate biochemical efects with increasing accuracy. Assessment of methods for regulatory variants and complex trait disease risk was less defnitive and indicates performance potentially suitable for auxiliary use in the clinic. Conclusions: Results show that while current methods are imperfect, they have major utility for research and clinical applications. Emerging methods and increasingly la
null, n., Jain, S., Bakolitsa, C., Brenner, S.E., Radivojac, P., Moult, J., et al. (2024). CAGI, the Critical Assessment of Genome Interpretation, establishes progress and prospects for computational genetic variant interpretation methods. GENOME BIOLOGY, 25(1), 1-46 [10.1186/s13059-023-03113-6].
CAGI, the Critical Assessment of Genome Interpretation, establishes progress and prospects for computational genetic variant interpretation methods
Bromberg, Yana;Turina, Paola;Capriotti, Emidio;Carter, Hannah;Babbi, Giulia;Bovo, Samuele;Di Lena, Pietro;Martelli, Pier Luigi;Savojardo, Castrense;Casadio, Rita;Fariselli, Piero;Bellazzi, Riccardo;Zhang, Jing;
2024
Abstract
Background: The Critical Assessment of Genome Interpretation (CAGI) aims to advance the state-of-the-art for computational prediction of genetic variant impact, particularly where relevant to disease. The fve complete editions of the CAGI community experiment comprised 50 challenges, in which participants made blind predictions of phenotypes from genetic data, and these were evaluated by independent assessors. Results: Performance was particularly strong for clinical pathogenic variants, including some difcult-to-diagnose cases, and extends to interpretation of cancer-related variants. Missense variant interpretation methods were able to estimate biochemical efects with increasing accuracy. Assessment of methods for regulatory variants and complex trait disease risk was less defnitive and indicates performance potentially suitable for auxiliary use in the clinic. Conclusions: Results show that while current methods are imperfect, they have major utility for research and clinical applications. Emerging methods and increasingly laFile | Dimensione | Formato | |
---|---|---|---|
CAGI flag 2024.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
6.25 MB
Formato
Adobe PDF
|
6.25 MB | Adobe PDF | Visualizza/Apri |
13059_2023_3113_MOESM1_ESM.docx
accesso aperto
Tipo:
File Supplementare
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
5.53 MB
Formato
Microsoft Word XML
|
5.53 MB | Microsoft Word XML | Visualizza/Apri |
13059_2023_3113_MOESM2_ESM.xls
accesso aperto
Tipo:
File Supplementare
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
653 kB
Formato
Microsoft Excel
|
653 kB | Microsoft Excel | Visualizza/Apri |
13059_2023_3113_MOESM3_ESM.xlsx
accesso aperto
Tipo:
File Supplementare
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
18.09 kB
Formato
Microsoft Excel XML
|
18.09 kB | Microsoft Excel XML | Visualizza/Apri |
13059_2023_3113_MOESM4_ESM.xls
accesso aperto
Tipo:
File Supplementare
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
588.5 kB
Formato
Microsoft Excel
|
588.5 kB | Microsoft Excel | Visualizza/Apri |
13059_2023_3113_MOESM5_ESM.xls
accesso aperto
Tipo:
File Supplementare
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
28.5 kB
Formato
Microsoft Excel
|
28.5 kB | Microsoft Excel | Visualizza/Apri |
13059_2023_3113_MOESM6_ESM.xls
accesso aperto
Tipo:
File Supplementare
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
69.5 kB
Formato
Microsoft Excel
|
69.5 kB | Microsoft Excel | Visualizza/Apri |
13059_2023_3113_MOESM8_ESM.docx
accesso aperto
Tipo:
File Supplementare
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
17.44 kB
Formato
Microsoft Word XML
|
17.44 kB | Microsoft Word XML | Visualizza/Apri |
13059_2023_3113_MOESM7_ESM.xls
accesso aperto
Tipo:
File Supplementare
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
27 kB
Formato
Microsoft Excel
|
27 kB | Microsoft Excel | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.