Among the relevant aspects of the family resemblance approach (FRA), our study focuses on the potential of the approach to elaborate on disciplinary identities in an interdisciplinary context, specifically regarding the interplay between physics and mathematics. We present and discuss how the FRA wheel can be used and intertwined with the framework of boundary objects and boundary crossing mechanisms (Akkerman & Bakker, Review of Educational Research, 81, 132–169, 2011), which is well-known in STEM education for dealing with interdisciplinarity. The role of the FRA discussed in the article is dual: both practical and theoretical. It is practical in that we show how its use, in combination with the Akkerman and Bakker framework, appears effective in fostering productive discussions among prospective teachers on disciplinary identities and interdisciplinarity in historical cases. It is theoretical in that the combination of the two frameworks provides the vocabulary to characterise the ‘ambiguous nature’ of interdisciplinarity: like boundaries, interdisciplinarity both separates disciplines, making their identities emerge, and connects them, fostering mechanisms of crossing and transgressing the boundaries. This empirical study reveals how the theoretical elaboration took advantage of the prospective teachers’ contributions. We initially presented the FRA to characterise disciplinary identities, but the prospective teachers highlighted its potential to characterise also the boundary zone and the dialogue between physics and mathematics. The data analysis showed that the combination of the two frameworks shaped a complex learning space where there was room for very different epistemic demands of the prospective teachers: from those who feel better within the identity cores of the disciplines, to those who like to inhabit the boundary zone and others who like to re-shape boundary spaces and move dynamically across them.

Exploring the boundaries in an interdisciplinary context through the Family Resemblance Approach: The Dialogue Between Physics and Mathematics

Satanassi S.
;
Branchetti L.;Caramaschi M.;Barelli E.;Levrini O.
2023

Abstract

Among the relevant aspects of the family resemblance approach (FRA), our study focuses on the potential of the approach to elaborate on disciplinary identities in an interdisciplinary context, specifically regarding the interplay between physics and mathematics. We present and discuss how the FRA wheel can be used and intertwined with the framework of boundary objects and boundary crossing mechanisms (Akkerman & Bakker, Review of Educational Research, 81, 132–169, 2011), which is well-known in STEM education for dealing with interdisciplinarity. The role of the FRA discussed in the article is dual: both practical and theoretical. It is practical in that we show how its use, in combination with the Akkerman and Bakker framework, appears effective in fostering productive discussions among prospective teachers on disciplinary identities and interdisciplinarity in historical cases. It is theoretical in that the combination of the two frameworks provides the vocabulary to characterise the ‘ambiguous nature’ of interdisciplinarity: like boundaries, interdisciplinarity both separates disciplines, making their identities emerge, and connects them, fostering mechanisms of crossing and transgressing the boundaries. This empirical study reveals how the theoretical elaboration took advantage of the prospective teachers’ contributions. We initially presented the FRA to characterise disciplinary identities, but the prospective teachers highlighted its potential to characterise also the boundary zone and the dialogue between physics and mathematics. The data analysis showed that the combination of the two frameworks shaped a complex learning space where there was room for very different epistemic demands of the prospective teachers: from those who feel better within the identity cores of the disciplines, to those who like to inhabit the boundary zone and others who like to re-shape boundary spaces and move dynamically across them.
2023
Satanassi S.; Branchetti L.; Fantini P.; Casarotto R.; Caramaschi M.; Barelli E.; Levrini O.
File in questo prodotto:
File Dimensione Formato  
[2023] Satanassi et al._FRA e INTERD.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 1.85 MB
Formato Adobe PDF
1.85 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/924875
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact