Charge transport in thick amorphous silicon dioxide capacitors for integrated galvanic insulators is experimentally investigated and analyzed through numerical simulations carried out with a commercial TCAD tool. The material intrinsic defectivity and the large biases applied to such devices give rise to a leakage current which is responsible of degradation and failure. Hence it is crucial to have a complete understanding of the charge-transport main physical mechanisms in amorphous silicon oxide. For this reason, constant-current time dependent dielectric breakdown measurements have been performed on thick metal-insulator-metal structures and, in order to gain insight on the role of defects on breakdown, numerical simulations have been compared to experiments.
Constant-current time dependent dielectric breakdown in thick amorphous SiO2 capacitors
Giuliano F.
Primo
;Reggiani S.;Gnani E.;Gnudi A.;
2021
Abstract
Charge transport in thick amorphous silicon dioxide capacitors for integrated galvanic insulators is experimentally investigated and analyzed through numerical simulations carried out with a commercial TCAD tool. The material intrinsic defectivity and the large biases applied to such devices give rise to a leakage current which is responsible of degradation and failure. Hence it is crucial to have a complete understanding of the charge-transport main physical mechanisms in amorphous silicon oxide. For this reason, constant-current time dependent dielectric breakdown measurements have been performed on thick metal-insulator-metal structures and, in order to gain insight on the role of defects on breakdown, numerical simulations have been compared to experiments.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.