In this study, mildly deodorized olive oil (DEO) and its admixtures with extra virgin olive oil (EVOO) have been analyzed after heating treatments by microwave and conventional oven. Different patterns in oxidative and hydrolytic degradation of lipids in genuine and sophisticated olive oils have been evaluated by chromatographic and spectroscopic methods and related to heating treatments. The experimental plan focused on the assessment of the (a) hydrolytic degree of the samples by the free acidity and the 1,2- and 1,3-diacylglycerols (DAG) determinations; (b) oxidative status of the samples by the assessment of the peroxide value (POV) and oxidized fatty acid (OFA), the specific absorption at 270 nm (k270), the accelerated aging test (OSI) and volatile compounds. In general, the thermal treatment by conventional oven led to a higher content of 1,3-DAG and secondary oxidation products than microwave heating. A duo-trio sensory test was also performed: tasters were not able to discriminate between EVOO and DEO heated by conventional oven whereas they were when oils were microwaved.
A. Bendini, E. Valli, L. Cerretani, E. Chiavaro, G. Lercker (2009). Study on the Effects of Heating of Virgin Olive Oil Blended with Mildly Deodorized Olive Oil: Focus on the Hydrolytic and Oxidative State. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 57, 10055-10062 [10.1021/jf901813s].
Study on the Effects of Heating of Virgin Olive Oil Blended with Mildly Deodorized Olive Oil: Focus on the Hydrolytic and Oxidative State
BENDINI, ALESSANDRA;VALLI, ENRICO;CERRETANI, LORENZO;LERCKER, GIOVANNI
2009
Abstract
In this study, mildly deodorized olive oil (DEO) and its admixtures with extra virgin olive oil (EVOO) have been analyzed after heating treatments by microwave and conventional oven. Different patterns in oxidative and hydrolytic degradation of lipids in genuine and sophisticated olive oils have been evaluated by chromatographic and spectroscopic methods and related to heating treatments. The experimental plan focused on the assessment of the (a) hydrolytic degree of the samples by the free acidity and the 1,2- and 1,3-diacylglycerols (DAG) determinations; (b) oxidative status of the samples by the assessment of the peroxide value (POV) and oxidized fatty acid (OFA), the specific absorption at 270 nm (k270), the accelerated aging test (OSI) and volatile compounds. In general, the thermal treatment by conventional oven led to a higher content of 1,3-DAG and secondary oxidation products than microwave heating. A duo-trio sensory test was also performed: tasters were not able to discriminate between EVOO and DEO heated by conventional oven whereas they were when oils were microwaved.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.