This article presents an ultra-low-power parallel computing platform and its system-on-chip (SoC) embodiment, targeting a wide range of emerging near-sensor processing tasks for Internet of Things (IoT) applications. The proposed SoC achieves 193 million operations per second (MOPS) per mW at 162 MOPS (32 bits), improving the first-generation Parallel Ultra-Low-Power (PULP) architecture by 6.4 and 3.2 times in performance and energy efficiency, respectively.
Energy-Efficient Near-Threshold Parallel Computing: The PULPv2 Cluster
Rossi, Davide;Pullini, Antonio;Loi, Igor;Benini, Luca
2017
Abstract
This article presents an ultra-low-power parallel computing platform and its system-on-chip (SoC) embodiment, targeting a wide range of emerging near-sensor processing tasks for Internet of Things (IoT) applications. The proposed SoC achieves 193 million operations per second (MOPS) per mW at 162 MOPS (32 bits), improving the first-generation Parallel Ultra-Low-Power (PULP) architecture by 6.4 and 3.2 times in performance and energy efficiency, respectively.File in questo prodotto:
Eventuali allegati, non sono esposti
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.