In this work we investigate the performance of double-gate and cylindrical nanowire FETs with high- gate dielectrics at their extreme miniaturization limits. The model fully accounts for quantum electrostatics; current transport is simulated by an improved quantum drift-diffusion approach supported by a new thickness-dependent mobility model which nicely fits the available measurements for both SiO2 and HfO2 gate dielectrics. The on-current is simulated using both the quantum drift-diffusion model and a full-quantum transport approach based on the quantum transmitting boundary method, which assumes a purely ballistic transport. The performance comparison between SiO2 and HfO2 insulated-gate FETs with the same electrical oxide thickness demonstrates that the latter provides a slight degradation of the short-channel effect compared with the former but, at the same time, gives an improved on-current due to lateral capacitive-coupling effects, despite the inherent degradation of the low-field mobility.

Effects of High-k (HfO2) Gate Dielectrics in Double-Gate and Cylindrical-Nanowire FETs Scaled to the Ultimate Technology Nodes

GNANI, ELENA;REGGIANI, SUSANNA;RUDAN, MASSIMO;BACCARANI, GIORGIO
2007

Abstract

In this work we investigate the performance of double-gate and cylindrical nanowire FETs with high- gate dielectrics at their extreme miniaturization limits. The model fully accounts for quantum electrostatics; current transport is simulated by an improved quantum drift-diffusion approach supported by a new thickness-dependent mobility model which nicely fits the available measurements for both SiO2 and HfO2 gate dielectrics. The on-current is simulated using both the quantum drift-diffusion model and a full-quantum transport approach based on the quantum transmitting boundary method, which assumes a purely ballistic transport. The performance comparison between SiO2 and HfO2 insulated-gate FETs with the same electrical oxide thickness demonstrates that the latter provides a slight degradation of the short-channel effect compared with the former but, at the same time, gives an improved on-current due to lateral capacitive-coupling effects, despite the inherent degradation of the low-field mobility.
E. Gnani; S. Reggiani; M. Rudan; G. Baccarani
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/51244
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 28
social impact