Two different protection diodes are investigated with electro-thermal simulation and transient interferometric thermal-mapping experiments in a new complementary approach. The prediction capability of the simulation tool is validated up to the thermal failure of the p-n junction. The temperature distribution and its dynamics during the application of high-current pulses are studied by comparing the calculated and experimental optical phase shifts: a quantitative agreement both in temporal evolution and space distribution of temperature is obtained up to 1100 K.

A new numerical and experimental analysis tool for ESD devices by means of the transient interferometric technique

REGGIANI, SUSANNA;GNANI, ELENA;RUDAN, MASSIMO;BACCARANI, GIORGIO;
2005

Abstract

Two different protection diodes are investigated with electro-thermal simulation and transient interferometric thermal-mapping experiments in a new complementary approach. The prediction capability of the simulation tool is validated up to the thermal failure of the p-n junction. The temperature distribution and its dynamics during the application of high-current pulses are studied by comparing the calculated and experimental optical phase shifts: a quantitative agreement both in temporal evolution and space distribution of temperature is obtained up to 1100 K.
2005
S. Reggiani; E. Gnani; M. Rudan; G. Baccarani; S. Bychikhin; J. Kuzmik; D. Pogany; E. Gornik; M. Denison; N. Jensen; G. Groos; M. Stecher
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/23811
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 11
social impact