The mammalian target of rapamycin (mTOR) serine/threonine kinase is the catalytic subunit of two multi-protein complexes, referred to as mTORC1 and mTORC2. Signaling downstream of mTORC1 has a critical role in leukemic cell biology by controlling mRNA translation of genes involved in both cell survival and proliferation. mTORC1 activity can be down-modulated by upregulating the liver kinase B1/AMP-activated protein kinase (LKB1/AMPK) pathway. Here, we have explored the therapeutic potential of the anti-diabetic drug, metformin (an LKB1/AMPK activator), against both T-cell acute lymphoblastic leukemia (T-ALL) cell lines and primary samples from T-ALL patients displaying mTORC1 activation. Metformin affected T-ALL cell viability by inducing autophagy and apoptosis. However, it was much less toxic against proliferating CD4(+) T-lymphocytes from healthy donors. Western blot analysis demonstrated dephosphorylation of mTORC1 downstream targets. Unlike rapamycin, we found a marked inhibition of mRNA translation in T-ALL cells treated with metformin. Remarkably, metformin targeted the side population of T-ALL cell lines as well as a putative leukemia-initiating cell subpopulation (CD34(+)/CD7(-)/CD4(+)) in patient samples. In conclusion, metformin displayed a remarkable anti-leukemic activity, which emphasizes future development of LKB1/AMPK activators as clinical candidates for therapy in T-ALL.
Titolo: | AMP-dependent kinase/mammalian target of rapamycin complex 1 signaling in T-cell acute lymphoblastic leukemia: therapeutic implications. |
Autore/i: | GRIMALDI, CECILIA; CHIARINI, FRANCESCA; Tabellini G.; Ricci F.; Tazzari P. L.; Battistelli M.; Falcieri E.; Bortul R.; Melchionda F.; IACOBUCCI, ILARIA; Pagliaro P.; MARTINELLI, GIOVANNI; PESSION, ANDREA; Barata J. T.; McCubrey J. A.; MARTELLI, ALBERTO MARIA |
Autore/i Unibo: | |
Anno: | 2012 |
Rivista: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1038/leu.2011.269 |
Abstract: | The mammalian target of rapamycin (mTOR) serine/threonine kinase is the catalytic subunit of two multi-protein complexes, referred to as mTORC1 and mTORC2. Signaling downstream of mTORC1 has a critical role in leukemic cell biology by controlling mRNA translation of genes involved in both cell survival and proliferation. mTORC1 activity can be down-modulated by upregulating the liver kinase B1/AMP-activated protein kinase (LKB1/AMPK) pathway. Here, we have explored the therapeutic potential of the anti-diabetic drug, metformin (an LKB1/AMPK activator), against both T-cell acute lymphoblastic leukemia (T-ALL) cell lines and primary samples from T-ALL patients displaying mTORC1 activation. Metformin affected T-ALL cell viability by inducing autophagy and apoptosis. However, it was much less toxic against proliferating CD4(+) T-lymphocytes from healthy donors. Western blot analysis demonstrated dephosphorylation of mTORC1 downstream targets. Unlike rapamycin, we found a marked inhibition of mRNA translation in T-ALL cells treated with metformin. Remarkably, metformin targeted the side population of T-ALL cell lines as well as a putative leukemia-initiating cell subpopulation (CD34(+)/CD7(-)/CD4(+)) in patient samples. In conclusion, metformin displayed a remarkable anti-leukemic activity, which emphasizes future development of LKB1/AMPK activators as clinical candidates for therapy in T-ALL. |
Data prodotto definitivo in UGOV: | 2013-06-27 10:06:53 |
Appare nelle tipologie: | 1.01 Articolo in rivista |