Grapevines are frequently subjected to heatwaves and limited water availability during ripening. These conditions can have consequences for the physiological health of the vines. Moreover, the situation is often exacerbated by intense solar radiation, resulting in reduced yield due to sunburn and a decline in quality. In light of these challenges, our study aimed to develop a fruit-zone cooling system designed to mitigate grape sunburn damage and improve the microclimate conditions within the vineyard. The system comprises a network of proximal sensors that collect microclimate data from the vineyard and an actuator that activates nebulizers when the temperature exceeds the threshold of 35 degrees C. The research was conducted over two years (2022 and 2023) in Bologna (Italy) using potted Sangiovese and Montepulciano vines. These two vintages were characterized by high temperatures, with varying amounts of rainfall during the test period, significantly impacting the evaporative demand, which was notably higher in 2023. Starting from the veraison stage we compared three treatments: Irrigated control vines (WW); Control vines subjected to 50% water restriction during the month of August (WS); WS vines treated with nebulized water in the bunch area during the stress period (WS+FOG). The application of nebulized water effectively reduced the temperature of both the air around the clusters and the clusters themselves. As we expected, Montepulciano showed better single leaf assimilation rate and stomatal conductance under non-limiting water conditions than Sangiovese while their behavior was unaffected under water-scarce conditions. Importantly, for the first time, we demonstrated that nebulized water positively affected gas exchange in both grape varieties. In addition to this, the vines treated with the misting system exhibited higher productivity compared to WS vines without affecting technological maturity. In the 2023 vintage, the activation of the system prevented the ripening blockage that occurred in Montepulciano under water stress. Regarding the concentration of total anthocyanins, a significant increase in color was observed in WS+FOG treatment, suggesting a predominant role of microclimate on anthocyanin biosynthesis and reduction of oxidative phenomena. In conclusion, the fruit-zone cooling system proved to be an invaluable tool for mitigating the adverse effects of multiple summer stresses.

Valentini G., Allegro G., Pastore C., Sangiorgio D., Noferini M., Muzzi E., et al. (2024). Use of an automatic fruit-zone cooling system to cope with multiple summer stresses in Sangiovese and Montepulciano grapes. FRONTIERS IN PLANT SCIENCE, 15(April), 1-13 [10.3389/fpls.2024.1391963].

Use of an automatic fruit-zone cooling system to cope with multiple summer stresses in Sangiovese and Montepulciano grapes

Valentini G.
Primo
;
Allegro G.
;
Pastore C.;Sangiorgio D.;Noferini M.;Muzzi E.;Filippetti I.
Ultimo
2024

Abstract

Grapevines are frequently subjected to heatwaves and limited water availability during ripening. These conditions can have consequences for the physiological health of the vines. Moreover, the situation is often exacerbated by intense solar radiation, resulting in reduced yield due to sunburn and a decline in quality. In light of these challenges, our study aimed to develop a fruit-zone cooling system designed to mitigate grape sunburn damage and improve the microclimate conditions within the vineyard. The system comprises a network of proximal sensors that collect microclimate data from the vineyard and an actuator that activates nebulizers when the temperature exceeds the threshold of 35 degrees C. The research was conducted over two years (2022 and 2023) in Bologna (Italy) using potted Sangiovese and Montepulciano vines. These two vintages were characterized by high temperatures, with varying amounts of rainfall during the test period, significantly impacting the evaporative demand, which was notably higher in 2023. Starting from the veraison stage we compared three treatments: Irrigated control vines (WW); Control vines subjected to 50% water restriction during the month of August (WS); WS vines treated with nebulized water in the bunch area during the stress period (WS+FOG). The application of nebulized water effectively reduced the temperature of both the air around the clusters and the clusters themselves. As we expected, Montepulciano showed better single leaf assimilation rate and stomatal conductance under non-limiting water conditions than Sangiovese while their behavior was unaffected under water-scarce conditions. Importantly, for the first time, we demonstrated that nebulized water positively affected gas exchange in both grape varieties. In addition to this, the vines treated with the misting system exhibited higher productivity compared to WS vines without affecting technological maturity. In the 2023 vintage, the activation of the system prevented the ripening blockage that occurred in Montepulciano under water stress. Regarding the concentration of total anthocyanins, a significant increase in color was observed in WS+FOG treatment, suggesting a predominant role of microclimate on anthocyanin biosynthesis and reduction of oxidative phenomena. In conclusion, the fruit-zone cooling system proved to be an invaluable tool for mitigating the adverse effects of multiple summer stresses.
2024
Valentini G., Allegro G., Pastore C., Sangiorgio D., Noferini M., Muzzi E., et al. (2024). Use of an automatic fruit-zone cooling system to cope with multiple summer stresses in Sangiovese and Montepulciano grapes. FRONTIERS IN PLANT SCIENCE, 15(April), 1-13 [10.3389/fpls.2024.1391963].
Valentini G.; Allegro G.; Pastore C.; Sangiorgio D.; Noferini M.; Muzzi E.; Filippetti I.
File in questo prodotto:
File Dimensione Formato  
Valentini et al. (2024 - FPS).pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 2.92 MB
Formato Adobe PDF
2.92 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/996245
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact