Red wine colloids, crucial in determining wine quality and stability, are understudied due to inadequate techniques for studying them effectively in the natural wine environment. Recently, Asymmetrical Flow Field-flow Fractionation (AF4) with online multidetection has emerged as a novel analytical tool for quantifying, fractionating, and characterizing red wine colloids in their native state. This study aimed to characterize the colloidal composition of 24 monovarietal Italian wines produced without filtration, oak contact, fining treatments, malolactic fermentation, macerating enzymes or ageing on yeast lees. AF4 analysis allowed quantification and characterization of wine colloids based on light scattering signal (MALS; gyration radius - Rg), size (hydrodynamic radius – Rh) and absorbance (A280 & A520 nm). The results showed that each wine contained up to five distinct colloids’ populations, varying in size and gyration radii. Despite possessing very similar Rh, most colloids exhibited great differences in compactness, as indicated by their varying Rg values. Comparing the A280 signal of whole wines to those of wines containing only species larger than 5 kDa (considered colloids) allowed to calculate the percentage of molecules involved in colloidal particles assembly, ranging from 1 to 44 % of the total A280 absorbing compounds, reflecting the diversity among wines. The A520 signal indicated the presence of polymeric pigments in the colloidal fraction. Notably, colored colloids all had Rg > 20 nm, indicating their association with other colloidal-forming compounds. This observation led to the conclusion that, apart from free anthocyanins and polymeric pigments, the color of red wines is also due to colloidal particles formed by the latter bound to proteins, with their quantity being highly variable across wines of different origin. These findings, which highlight the fundamental role of proteins in shaping the colloidal status of red wines, were utilized to propose an updated hypothetical model for colloidal aggregation in red wine.

Marangon, M., Marassi, V., Roda, B., Zattoni, A., Reschiglian, P., Mattivi, F., et al. (2024). Comprehensive analysis of colloid formation, distribution, and properties of monovarietal red wines using asymmetrical flow field-flow fractionation with online multidetection. FOOD RESEARCH INTERNATIONAL, 187(July 2024), 1-12 [10.1016/j.foodres.2024.114414].

Comprehensive analysis of colloid formation, distribution, and properties of monovarietal red wines using asymmetrical flow field-flow fractionation with online multidetection

Marassi, Valentina
;
Roda, Barbara;Zattoni, Andrea;Reschiglian, Pierluigi;Ricci, Arianna;Versari, Andrea;
2024

Abstract

Red wine colloids, crucial in determining wine quality and stability, are understudied due to inadequate techniques for studying them effectively in the natural wine environment. Recently, Asymmetrical Flow Field-flow Fractionation (AF4) with online multidetection has emerged as a novel analytical tool for quantifying, fractionating, and characterizing red wine colloids in their native state. This study aimed to characterize the colloidal composition of 24 monovarietal Italian wines produced without filtration, oak contact, fining treatments, malolactic fermentation, macerating enzymes or ageing on yeast lees. AF4 analysis allowed quantification and characterization of wine colloids based on light scattering signal (MALS; gyration radius - Rg), size (hydrodynamic radius – Rh) and absorbance (A280 & A520 nm). The results showed that each wine contained up to five distinct colloids’ populations, varying in size and gyration radii. Despite possessing very similar Rh, most colloids exhibited great differences in compactness, as indicated by their varying Rg values. Comparing the A280 signal of whole wines to those of wines containing only species larger than 5 kDa (considered colloids) allowed to calculate the percentage of molecules involved in colloidal particles assembly, ranging from 1 to 44 % of the total A280 absorbing compounds, reflecting the diversity among wines. The A520 signal indicated the presence of polymeric pigments in the colloidal fraction. Notably, colored colloids all had Rg > 20 nm, indicating their association with other colloidal-forming compounds. This observation led to the conclusion that, apart from free anthocyanins and polymeric pigments, the color of red wines is also due to colloidal particles formed by the latter bound to proteins, with their quantity being highly variable across wines of different origin. These findings, which highlight the fundamental role of proteins in shaping the colloidal status of red wines, were utilized to propose an updated hypothetical model for colloidal aggregation in red wine.
2024
Marangon, M., Marassi, V., Roda, B., Zattoni, A., Reschiglian, P., Mattivi, F., et al. (2024). Comprehensive analysis of colloid formation, distribution, and properties of monovarietal red wines using asymmetrical flow field-flow fractionation with online multidetection. FOOD RESEARCH INTERNATIONAL, 187(July 2024), 1-12 [10.1016/j.foodres.2024.114414].
Marangon, Matteo; Marassi, Valentina; Roda, Barbara; Zattoni, Andrea; Reschiglian, Pierluigi; Mattivi, Fulvio; Moio, Luigi; Ricci, Arianna; Piombino, ...espandi
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0963996924004848-main.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 4.17 MB
Formato Adobe PDF
4.17 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/969595
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact