We describe the multi-valley/multi-subband Monte Carlo (MV–MSMC) approach to model nanoscale MOSFETs featuring III–V semiconductors as channel material. This approach describes carrier quantization normal to the channel direction, solving the Schrödinger equation while off-equilibrium transport is captured by the multi-valley/multi-subband Boltzmann transport equation. In this paper, we outline a methodology to include quantum effects along the transport direction (namely, source-to-drain tunneling) and provide model verification by comparison with Non-Equilibrium Green’s Function results for nanoscale MOSFETs with InAs and InGaAs channels. It is then shown how to use the MV–MSMC to calibrate a Technology Computer Aided Design (TCAD) simulation deck based on the drift–diffusion model that allows much faster simulations and opens the doors to variability studies in III–V channel MOSFETs.

Modeling nanoscale iii–v channel mosfets with the self-consistent multi-valley/multi-subband monte carlo approach / Caruso E.; Esseni D.; Gnani E.; Lizzit D.; Palestri P.; Pin A.; Puglisi F.M.; Selmi L.; Zagni N.. - In: ELECTRONICS. - ISSN 2079-9292. - ELETTRONICO. - 10:20(2021), pp. 2472.1-2472.16. [10.3390/electronics10202472]

Modeling nanoscale iii–v channel mosfets with the self-consistent multi-valley/multi-subband monte carlo approach

Caruso E.;Esseni D.;Gnani E.;Selmi L.;
2021

Abstract

We describe the multi-valley/multi-subband Monte Carlo (MV–MSMC) approach to model nanoscale MOSFETs featuring III–V semiconductors as channel material. This approach describes carrier quantization normal to the channel direction, solving the Schrödinger equation while off-equilibrium transport is captured by the multi-valley/multi-subband Boltzmann transport equation. In this paper, we outline a methodology to include quantum effects along the transport direction (namely, source-to-drain tunneling) and provide model verification by comparison with Non-Equilibrium Green’s Function results for nanoscale MOSFETs with InAs and InGaAs channels. It is then shown how to use the MV–MSMC to calibrate a Technology Computer Aided Design (TCAD) simulation deck based on the drift–diffusion model that allows much faster simulations and opens the doors to variability studies in III–V channel MOSFETs.
2021
Modeling nanoscale iii–v channel mosfets with the self-consistent multi-valley/multi-subband monte carlo approach / Caruso E.; Esseni D.; Gnani E.; Lizzit D.; Palestri P.; Pin A.; Puglisi F.M.; Selmi L.; Zagni N.. - In: ELECTRONICS. - ISSN 2079-9292. - ELETTRONICO. - 10:20(2021), pp. 2472.1-2472.16. [10.3390/electronics10202472]
Caruso E.; Esseni D.; Gnani E.; Lizzit D.; Palestri P.; Pin A.; Puglisi F.M.; Selmi L.; Zagni N.
File in questo prodotto:
File Dimensione Formato  
electronics-10-02472-v2.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Creative commons
Dimensione 7.68 MB
Formato Adobe PDF
7.68 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/869325
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact