We describe the multi-valley/multi-subband Monte Carlo (MV–MSMC) approach to model nanoscale MOSFETs featuring III–V semiconductors as channel material. This approach describes carrier quantization normal to the channel direction, solving the Schrödinger equation while off-equilibrium transport is captured by the multi-valley/multi-subband Boltzmann transport equation. In this paper, we outline a methodology to include quantum effects along the transport direction (namely, source-to-drain tunneling) and provide model verification by comparison with Non-Equilibrium Green’s Function results for nanoscale MOSFETs with InAs and InGaAs channels. It is then shown how to use the MV–MSMC to calibrate a Technology Computer Aided Design (TCAD) simulation deck based on the drift–diffusion model that allows much faster simulations and opens the doors to variability studies in III–V channel MOSFETs.
Caruso E., Esseni D., Gnani E., Lizzit D., Palestri P., Pin A., et al. (2021). Modeling nanoscale iii–v channel mosfets with the self-consistent multi-valley/multi-subband monte carlo approach. ELECTRONICS, 10(20), 1-16 [10.3390/electronics10202472].
Modeling nanoscale iii–v channel mosfets with the self-consistent multi-valley/multi-subband monte carlo approach
Caruso E.;Esseni D.;Gnani E.;Selmi L.;
2021
Abstract
We describe the multi-valley/multi-subband Monte Carlo (MV–MSMC) approach to model nanoscale MOSFETs featuring III–V semiconductors as channel material. This approach describes carrier quantization normal to the channel direction, solving the Schrödinger equation while off-equilibrium transport is captured by the multi-valley/multi-subband Boltzmann transport equation. In this paper, we outline a methodology to include quantum effects along the transport direction (namely, source-to-drain tunneling) and provide model verification by comparison with Non-Equilibrium Green’s Function results for nanoscale MOSFETs with InAs and InGaAs channels. It is then shown how to use the MV–MSMC to calibrate a Technology Computer Aided Design (TCAD) simulation deck based on the drift–diffusion model that allows much faster simulations and opens the doors to variability studies in III–V channel MOSFETs.File | Dimensione | Formato | |
---|---|---|---|
electronics-10-02472-v2.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Creative commons
Dimensione
7.68 MB
Formato
Adobe PDF
|
7.68 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.