Breast Cancer (BC) is a leading cause of death in women, currently affecting 13% of female population worldwide. First-line clinical treatments against Estrogen Receptor positive (ER+) BC rely on suppressing estrogen production, by inhibiting the aromatase (AR) enzyme, or on blocking estrogen-dependent pro-oncogenic signaling, by targeting Estrogen Receptor (ER) α with selective Modulators/Degraders (SERMs/SERDs). The development of dual acting molecules targeting AR and ERα represents a tantalizing alternative strategy to fight ER + BC, reducing the incidence of adverse effects and resistance onset that limit the effectiveness of these gold-standard therapies. Here, in silico design, synthesis, biological evaluation and an atomic-level characterization of the binding and inhibition mechanism of twelve structurally related drug-candidates enable the discovery of multiple compounds active on both AR and ERα in the sub-μM range. The best drug-candidate 3a displayed a balanced low-nanomolar IC50 towards the two targets, SERM activity and moderate selectivity towards a BC cell line. Moreover, most of the studied compounds reduced ERα levels, suggesting a potential SERD activity. This study dissects the key structural traits needed to obtain optimal dual acting drug-candidates, showing that multitarget compounds may be a viable therapeutic option to counteract ER + BC.

Balanced dual acting compounds targeting aromatase and estrogen receptor α as an emerging therapeutic opportunity to counteract estrogen responsive breast cancer

Caciolla J.
Primo
;
Turrini E.;Belluti F.;Rampa A.;Bisi A.;Fimognari C.;Gobbi S.
Penultimo
;
2021

Abstract

Breast Cancer (BC) is a leading cause of death in women, currently affecting 13% of female population worldwide. First-line clinical treatments against Estrogen Receptor positive (ER+) BC rely on suppressing estrogen production, by inhibiting the aromatase (AR) enzyme, or on blocking estrogen-dependent pro-oncogenic signaling, by targeting Estrogen Receptor (ER) α with selective Modulators/Degraders (SERMs/SERDs). The development of dual acting molecules targeting AR and ERα represents a tantalizing alternative strategy to fight ER + BC, reducing the incidence of adverse effects and resistance onset that limit the effectiveness of these gold-standard therapies. Here, in silico design, synthesis, biological evaluation and an atomic-level characterization of the binding and inhibition mechanism of twelve structurally related drug-candidates enable the discovery of multiple compounds active on both AR and ERα in the sub-μM range. The best drug-candidate 3a displayed a balanced low-nanomolar IC50 towards the two targets, SERM activity and moderate selectivity towards a BC cell line. Moreover, most of the studied compounds reduced ERα levels, suggesting a potential SERD activity. This study dissects the key structural traits needed to obtain optimal dual acting drug-candidates, showing that multitarget compounds may be a viable therapeutic option to counteract ER + BC.
2021
Caciolla J.; Martini S.; Spinello A.; Pavlin M.; Turrini E.; Simonelli F.; Belluti F.; Rampa A.; Bisi A.; Fimognari C.; Zaffaroni N.; Gobbi S.; Magistrato A.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/850191
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 11
social impact