Janus kinases (JAKs) are a family of proinflammatory enzymes able to mediate the immune responses and the inflammatory cascade by modulating multiple cytokine expressions as well as various growth factors. In the present study, the inhibition of the JAK-signal transducer and activator of transcription (STAT) signaling pathway is explored as a potential strategy for treating autoimmune and inflammatory disorders. A computationally driven approach aimed at identifying novel JAK inhibitors based on molecular topology, docking, and molecular dynamics simulations was carried out. For the best candidates selected, the inhibitory activity against JAK2 was evaluated in vitro. Two hit compounds with a novel chemical scaffold, 4 (IC50 = 0.81 μM) and 7 (IC50 = 0.64 μM), showed promising results when compared with the reference drug Tofacitinib (IC50 = 0.031 μM).
Galvez-Llompart M., Ocello R., Rullo L., Stamatakos S., Alessandrini I., Zanni R., et al. (2021). Targeting the JAK/STAT Pathway: A Combined Ligand- And Target-Based Approach. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 61(6), 3091-3108 [10.1021/acs.jcim.0c01468].
Targeting the JAK/STAT Pathway: A Combined Ligand- And Target-Based Approach
Ocello R.;Rullo L.;Stamatakos S.;Alessandrini I.;Cavalli A.;Candeletti S.;Masetti M.;Romualdi P.;Recanatini M.
2021
Abstract
Janus kinases (JAKs) are a family of proinflammatory enzymes able to mediate the immune responses and the inflammatory cascade by modulating multiple cytokine expressions as well as various growth factors. In the present study, the inhibition of the JAK-signal transducer and activator of transcription (STAT) signaling pathway is explored as a potential strategy for treating autoimmune and inflammatory disorders. A computationally driven approach aimed at identifying novel JAK inhibitors based on molecular topology, docking, and molecular dynamics simulations was carried out. For the best candidates selected, the inhibitory activity against JAK2 was evaluated in vitro. Two hit compounds with a novel chemical scaffold, 4 (IC50 = 0.81 μM) and 7 (IC50 = 0.64 μM), showed promising results when compared with the reference drug Tofacitinib (IC50 = 0.031 μM).File | Dimensione | Formato | |
---|---|---|---|
acs.jcim.2021_1.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione
6.83 MB
Formato
Adobe PDF
|
6.83 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.