Abstract: Mitochondrial diseases are highly heterogeneous metabolic disorders caused by genetic alterations in the mitochondrial DNA (mtDNA) or in the nuclear genome. In this study, we investigated a panel of blood biomarkers in a cohort of 123 mitochondrial patients, with prominent neurological and muscular manifestations. These biomarkers included creatine, fibroblast growth factor 21 (FGF21) and growth/differentiation factor 15 (GDF-15), and the novel cell free circulating-mtDNA (ccf-mtDNA). All biomarkers were significantly increased in the patient group. After stratification by the specific phenotypes, ccf-mtDNA was significantly increased in the Mitochondrial Encephalomyopathy Lactic Acidosis Stroke-like episodes syndrome (MELAS) group, and FGF21 and GDF-15 were significantly elevated in patients with MELAS and Myoclonic Epilepsy Ragged Red Fibers syndrome. On the contrary, in our cohort, creatine was not associated to a specific clinical phenotype. Longitudinal assessment in four MELAS patients showed increased levels of ccf-mtDNA in relation to acute events (stroke-like episodes/status epilepticus) or progression of neurodegeneration. Our results confirm the association of FGF21 and GDF-15 with mitochondrial translation defects due to tRNA mutations. Most notably, the novel ccf-mtDNA was strongly associated with MELAS and may be used for monitoring the disease course or to evaluate the efficacy of therapies, especially in the acute phase. Key messages: • FGF21/GDF15 efficiently identifies mitochondrial diseases due to mutations in tRNA genes. • The novel ccf-mtDNA is associated with MELAS and increases during acute events. • Creatine only discriminates severe mitochondrial patients. • FGF21, GDF-15, and ccf-mtDNA are possibly useful for monitoring therapy efficacy.

Expanding and validating the biomarkers for mitochondrial diseases / Maresca A.; Del Dotto V.; Romagnoli M.; La Morgia C.; Di Vito L.; Capristo M.; Valentino M.L.; Carelli V.. - In: JOURNAL OF MOLECULAR MEDICINE. - ISSN 0946-2716. - STAMPA. - 98:10(2020), pp. 1467-1478. [10.1007/s00109-020-01967-y]

Expanding and validating the biomarkers for mitochondrial diseases

Maresca A.;Del Dotto V.;La Morgia C.;Valentino M. L.;Carelli V.
2020

Abstract

Abstract: Mitochondrial diseases are highly heterogeneous metabolic disorders caused by genetic alterations in the mitochondrial DNA (mtDNA) or in the nuclear genome. In this study, we investigated a panel of blood biomarkers in a cohort of 123 mitochondrial patients, with prominent neurological and muscular manifestations. These biomarkers included creatine, fibroblast growth factor 21 (FGF21) and growth/differentiation factor 15 (GDF-15), and the novel cell free circulating-mtDNA (ccf-mtDNA). All biomarkers were significantly increased in the patient group. After stratification by the specific phenotypes, ccf-mtDNA was significantly increased in the Mitochondrial Encephalomyopathy Lactic Acidosis Stroke-like episodes syndrome (MELAS) group, and FGF21 and GDF-15 were significantly elevated in patients with MELAS and Myoclonic Epilepsy Ragged Red Fibers syndrome. On the contrary, in our cohort, creatine was not associated to a specific clinical phenotype. Longitudinal assessment in four MELAS patients showed increased levels of ccf-mtDNA in relation to acute events (stroke-like episodes/status epilepticus) or progression of neurodegeneration. Our results confirm the association of FGF21 and GDF-15 with mitochondrial translation defects due to tRNA mutations. Most notably, the novel ccf-mtDNA was strongly associated with MELAS and may be used for monitoring the disease course or to evaluate the efficacy of therapies, especially in the acute phase. Key messages: • FGF21/GDF15 efficiently identifies mitochondrial diseases due to mutations in tRNA genes. • The novel ccf-mtDNA is associated with MELAS and increases during acute events. • Creatine only discriminates severe mitochondrial patients. • FGF21, GDF-15, and ccf-mtDNA are possibly useful for monitoring therapy efficacy.
2020
Expanding and validating the biomarkers for mitochondrial diseases / Maresca A.; Del Dotto V.; Romagnoli M.; La Morgia C.; Di Vito L.; Capristo M.; Valentino M.L.; Carelli V.. - In: JOURNAL OF MOLECULAR MEDICINE. - ISSN 0946-2716. - STAMPA. - 98:10(2020), pp. 1467-1478. [10.1007/s00109-020-01967-y]
Maresca A.; Del Dotto V.; Romagnoli M.; La Morgia C.; Di Vito L.; Capristo M.; Valentino M.L.; Carelli V.
File in questo prodotto:
File Dimensione Formato  
s00109-020-01967-y (1).pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 1.42 MB
Formato Adobe PDF
1.42 MB Adobe PDF Visualizza/Apri
file supplementari.zip

accesso aperto

Tipo: File Supplementare
Licenza: Licenza per accesso libero gratuito
Dimensione 567.01 kB
Formato Zip File
567.01 kB Zip File Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/794135
Citazioni
  • ???jsp.display-item.citation.pmc??? 19
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 38
social impact