We present singularity-free workspace optimization of a class of two-degree-of-freedom (2-DoF) parallel wrists with large rotation range capability. The wrists in consideration are kinematically equivalent to two families of 2-DoF homokinetic couplings. The first family comprises fully parallel wrists with N (N ≥ 3) double-universal (UU) legs. The second family comprises spherical N-(UU) parallel wrists with interconnecting revolute (R) joints. Both families belong to the more general class of zero-torsion parallel manipulators, and are, therefore, collectively referred to as zero-torsion wrists (ZTWs). We carry out a unified singularity-free workspace optimization by utilizing geometric properties of zero-torsion motion manifolds. Our work may serve as a conceptual guide to the design of ZTWs for large tilt-angle applications.
Wu, Y., Carricato, M. (2019). Workspace optimization of a class of zero-torsion parallel wrists. ROBOTICA, 37(7), 1174-1189 [10.1017/S0263574718000413].
Workspace optimization of a class of zero-torsion parallel wrists
Wu, Yuanqing;Carricato, Marco
2019
Abstract
We present singularity-free workspace optimization of a class of two-degree-of-freedom (2-DoF) parallel wrists with large rotation range capability. The wrists in consideration are kinematically equivalent to two families of 2-DoF homokinetic couplings. The first family comprises fully parallel wrists with N (N ≥ 3) double-universal (UU) legs. The second family comprises spherical N-(UU) parallel wrists with interconnecting revolute (R) joints. Both families belong to the more general class of zero-torsion parallel manipulators, and are, therefore, collectively referred to as zero-torsion wrists (ZTWs). We carry out a unified singularity-free workspace optimization by utilizing geometric properties of zero-torsion motion manifolds. Our work may serve as a conceptual guide to the design of ZTWs for large tilt-angle applications.| File | Dimensione | Formato | |
|---|---|---|---|
|
Wu-Carricato_ROB2019_PostPrint.pdf
accesso aperto
Descrizione: Full-text postprint article
Tipo:
Postprint / Author's Accepted Manuscript (AAM) - versione accettata per la pubblicazione dopo la peer-review
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione
4.38 MB
Formato
Adobe PDF
|
4.38 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


