Effects of fertilization practices, mineral (M) and organo-mineral (OM), on molecular composition of Nero di Troia cultivar grape berries was studied using conventional chemical analysis, Magnetic Resonance Imaging (MRI) and1H NMR spectroscopy on intact berries and extracts, respectively, and through analysis of yeast species developed on grape skins. Plants vegetative status did not differ between the two fertilization practices, whereas some grape juice chemical characteristics differed in fertilized grapes. MRI provided information on grape berries morphology through weighted images depending on spin-spin (T2) and spin-lattice (T1) relaxation times. T1 values were the highest in OM grape berries.1H NMR metabolic profile, combined with chemometric analysis, evidenced significant differences for some metabolites (valine, leucine, isoleucine, proline, and malic acid). Furthermore, higher frequency of yeasts genus Starmella sp., isolated from OM grape berries contributed to reinforcing the found results on the physiological response of wine grape Nero di Troia to fertilization.
Alessandra Ciampa, M.T.D. (2019). Combined magnetic resonance imaging and high resolution spectroscopy approaches to study the fertilization effects on metabolome, morphology and yeast community of wine grape berries, cultivar Nero di Troia. FOOD CHEMISTRY, 274, 831-839 [10.1016/j.foodchem.2018.09.056].
Combined magnetic resonance imaging and high resolution spectroscopy approaches to study the fertilization effects on metabolome, morphology and yeast community of wine grape berries, cultivar Nero di Troia
Alessandra Ciampa;Gianfranco Picone;Alessia Trimigno;Francesco Capozzi;
2019
Abstract
Effects of fertilization practices, mineral (M) and organo-mineral (OM), on molecular composition of Nero di Troia cultivar grape berries was studied using conventional chemical analysis, Magnetic Resonance Imaging (MRI) and1H NMR spectroscopy on intact berries and extracts, respectively, and through analysis of yeast species developed on grape skins. Plants vegetative status did not differ between the two fertilization practices, whereas some grape juice chemical characteristics differed in fertilized grapes. MRI provided information on grape berries morphology through weighted images depending on spin-spin (T2) and spin-lattice (T1) relaxation times. T1 values were the highest in OM grape berries.1H NMR metabolic profile, combined with chemometric analysis, evidenced significant differences for some metabolites (valine, leucine, isoleucine, proline, and malic acid). Furthermore, higher frequency of yeasts genus Starmella sp., isolated from OM grape berries contributed to reinforcing the found results on the physiological response of wine grape Nero di Troia to fertilization.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.