Apple discs were impregnated with isotonic solutions of sucrose and trehalose with and without calcium addition and after air dried. In the vacuum impregnation experiments, the calcium and the replacement of sucrose by trehalose did not have significant effect on the final volumetric deformation of the samples. During air drying two stages of changes were considered. The first one lasted until the saturation of the intracellular liquid phase, and the second one from the saturation of the intracellular liquid phase until the end of the drying process. Mass transfer has been analysed applying nonlinear irreversible thermodynamics. Water flux, water chemical potential and tissue shrinkage have been taken into account in order to accurately describe the mass transfer phenomena during air drying. A precise definition of chemical potential allowed estimating the partial molar energy needed for breakages and the reversible and irreversible deformations of tissue structure coupled with mass transfer during air drying of apple.

Betoret, E., Betoret, N., Castagnini, J., Rocculi, P., Dalla Rosa, M., Fito, P. (2015). Analysis by non-linear irreversible thermodynamics of compositional and structural changes occurred during air drying of vacuum impregnated apple (cv. Granny smith): Calcium and trehalose effects. JOURNAL OF FOOD ENGINEERING, 147(C), 95-101 [10.1016/j.jfoodeng.2014.09.028].

Analysis by non-linear irreversible thermodynamics of compositional and structural changes occurred during air drying of vacuum impregnated apple (cv. Granny smith): Calcium and trehalose effects

Betoret, E.;Castagnini, J. M.;Rocculi, P.;Dalla Rosa, M.;
2015

Abstract

Apple discs were impregnated with isotonic solutions of sucrose and trehalose with and without calcium addition and after air dried. In the vacuum impregnation experiments, the calcium and the replacement of sucrose by trehalose did not have significant effect on the final volumetric deformation of the samples. During air drying two stages of changes were considered. The first one lasted until the saturation of the intracellular liquid phase, and the second one from the saturation of the intracellular liquid phase until the end of the drying process. Mass transfer has been analysed applying nonlinear irreversible thermodynamics. Water flux, water chemical potential and tissue shrinkage have been taken into account in order to accurately describe the mass transfer phenomena during air drying. A precise definition of chemical potential allowed estimating the partial molar energy needed for breakages and the reversible and irreversible deformations of tissue structure coupled with mass transfer during air drying of apple.
2015
Betoret, E., Betoret, N., Castagnini, J., Rocculi, P., Dalla Rosa, M., Fito, P. (2015). Analysis by non-linear irreversible thermodynamics of compositional and structural changes occurred during air drying of vacuum impregnated apple (cv. Granny smith): Calcium and trehalose effects. JOURNAL OF FOOD ENGINEERING, 147(C), 95-101 [10.1016/j.jfoodeng.2014.09.028].
Betoret, E.*; Betoret, N.; Castagnini, J.M.; Rocculi, P.; Dalla Rosa, M.; Fito, P.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/628485
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 13
social impact