This paper presents a feed-forward approach to reduce sloshing dynamics in liquid handling robotic systems. According to our solution, the dynamics of a liquid into an open vessel manipulated by a robot can be described by means of a spherical pendulum mechanical model. By doing this, the sloshing problem can be addressed as a vibration suppression problem for a second order system. More in details, the pendulum model is utilized to tune an exponential filter which shapes the reference trajectory for the robot, thus achieving a sloshing-free motion of the liquid inside the vessel.

Control of liquid handling robotic systems: A feed-forward approach to suppress sloshing

Moriello, Lorenzo;Melchiorri, Claudio;Paoli, Andrea
2017

Abstract

This paper presents a feed-forward approach to reduce sloshing dynamics in liquid handling robotic systems. According to our solution, the dynamics of a liquid into an open vessel manipulated by a robot can be described by means of a spherical pendulum mechanical model. By doing this, the sloshing problem can be addressed as a vibration suppression problem for a second order system. More in details, the pendulum model is utilized to tune an exponential filter which shapes the reference trajectory for the robot, thus achieving a sloshing-free motion of the liquid inside the vessel.
2017
Proceedings - IEEE International Conference on Robotics and Automation
4286
4291
Moriello, Lorenzo; Biagiotti, Luigi; Melchiorri, Claudio; Paoli, Andrea
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/620356
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? ND
social impact