Respiratory complex III (CIII) is the first enzymatic bottleneck of the mitochondrial respiratory chain both in its native dimeric form and in supercomplexes. The mammalian CIII comprises 11 subunits among which cytochrome b is central in the catalytic core, where oxidation of ubiquinol occurs at the Qo site. The Qo- or PEWY-motif of cytochrome b is the most conserved through species. Importantly, the highly conserved glutamate at position 271 (Glu271) has never been studied in higher eukaryotes so far and its role in the Q-cycle remains debated. Here we showed that the homoplasmic m.15557G > A/MT-CYB, which causes the p.Glu271Lys amino acid substitution predicted to dramatically affect CIII, induces a mild mitochondrial dysfunction in human transmitochondrial cybrids. Indeed, we found that the severity of such mutation is mitigated by the proper assembly of CIII into supercomplexes, which may favor an optimal substrate channeling and buffer superoxide production in vitro. This article is protected by copyright. All rights reserved.

Mild phenotypes and proper supercomplex assembly in human cells carrying the homoplasmic m.15557G > A mutation in cytochrome b gene

IOMMARINI, LUISA;GHELLI, ANNA MARIA;LEONE, GIULIA;TROPEANO, CONCETTA VALENTINA;KURELAC, IVANA;AMATO, LAURA BENEDETTA;GASPARRE, GIUSEPPE;PORCELLI, ANNA MARIA
2018

Abstract

Respiratory complex III (CIII) is the first enzymatic bottleneck of the mitochondrial respiratory chain both in its native dimeric form and in supercomplexes. The mammalian CIII comprises 11 subunits among which cytochrome b is central in the catalytic core, where oxidation of ubiquinol occurs at the Qo site. The Qo- or PEWY-motif of cytochrome b is the most conserved through species. Importantly, the highly conserved glutamate at position 271 (Glu271) has never been studied in higher eukaryotes so far and its role in the Q-cycle remains debated. Here we showed that the homoplasmic m.15557G > A/MT-CYB, which causes the p.Glu271Lys amino acid substitution predicted to dramatically affect CIII, induces a mild mitochondrial dysfunction in human transmitochondrial cybrids. Indeed, we found that the severity of such mutation is mitigated by the proper assembly of CIII into supercomplexes, which may favor an optimal substrate channeling and buffer superoxide production in vitro. This article is protected by copyright. All rights reserved.
2018
Iommarini, Luisa; Ghelli, Anna; Leone, Giulia; Tropeano, Concetta Valentina; Kurelac, Ivana; Amato, Laura Benedetta; Gasparre, Giuseppe; Porcelli, Anna Maria
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/613501
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact