Novel pervasive devices such as smart surveillance cameras and autonomous micro-UAVs could greatly benefit from the availability of a computing device supporting embedded computer vision at a very low power budget. To this end, we propose PULP (Parallel processing Ultra-Low Power platform), an architecture built on clusters of tightly-coupled OpenRISC ISA cores, with advanced techniques for fast performance and energy scalability that exploit the capabilities of the STMicroelectronics UTBB FD-SOI 28nm technology. We show that PULP performance can be scaled over a 1x-354x range, with a peak theoretical energy efficiency of 211 GOPS/W. We present performance results for several demanding kernels from the image processing and vision domain, with post-layout power modeling: a motion detection application that can run at an efficiency up to 192 GOPS/W (90 % of the theoretical peak); a ConvNet-based detector for smart surveillance that can be switched between 0.7 and 27fps operating modes, scaling energy consumption per frame between 1.2 and 12mJ on a 320 ×240 image; and FAST + Lucas-Kanade optical flow on a 128 ×128 image at the ultra-low energy budget of 14 μJ per frame at 60fps.

PULP: A Ultra-Low Power Parallel Accelerator for Energy-Efficient and Flexible Embedded Vision

CONTI, FRANCESCO;ROSSI, DAVIDE;LOI, IGOR;BENINI, LUCA
2016

Abstract

Novel pervasive devices such as smart surveillance cameras and autonomous micro-UAVs could greatly benefit from the availability of a computing device supporting embedded computer vision at a very low power budget. To this end, we propose PULP (Parallel processing Ultra-Low Power platform), an architecture built on clusters of tightly-coupled OpenRISC ISA cores, with advanced techniques for fast performance and energy scalability that exploit the capabilities of the STMicroelectronics UTBB FD-SOI 28nm technology. We show that PULP performance can be scaled over a 1x-354x range, with a peak theoretical energy efficiency of 211 GOPS/W. We present performance results for several demanding kernels from the image processing and vision domain, with post-layout power modeling: a motion detection application that can run at an efficiency up to 192 GOPS/W (90 % of the theoretical peak); a ConvNet-based detector for smart surveillance that can be switched between 0.7 and 27fps operating modes, scaling energy consumption per frame between 1.2 and 12mJ on a 320 ×240 image; and FAST + Lucas-Kanade optical flow on a 128 ×128 image at the ultra-low energy budget of 14 μJ per frame at 60fps.
2016
Conti, Francesco; Rossi, Davide; Pullini, Antonio; Loi, Igor; Benini, Luca
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/534033
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 59
  • ???jsp.display-item.citation.isi??? 44
social impact