Novel pervasive devices such as smart surveillance cameras and autonomous micro-UAVs could greatly benefit from the availability of a computing device supporting embedded computer vision at a very low power budget. To this end, we propose PULP (Parallel processing Ultra-Low Power platform), an architecture built on clusters of tightly-coupled OpenRISC ISA cores, with advanced techniques for fast performance and energy scalability that exploit the capabilities of the STMicroelectronics UTBB FD-SOI 28nm technology. We show that PULP performance can be scaled over a 1x-354x range, with a peak theoretical energy efficiency of 211 GOPS/W. We present performance results for several demanding kernels from the image processing and vision domain, with post-layout power modeling: a motion detection application that can run at an efficiency up to 192 GOPS/W (90 % of the theoretical peak); a ConvNet-based detector for smart surveillance that can be switched between 0.7 and 27fps operating modes, scaling energy consumption per frame between 1.2 and 12mJ on a 320 ×240 image; and FAST + Lucas-Kanade optical flow on a 128 ×128 image at the ultra-low energy budget of 14 μJ per frame at 60fps.
Conti, F., Rossi, D., Pullini, A., Loi, I., Benini, L. (2016). PULP: A Ultra-Low Power Parallel Accelerator for Energy-Efficient and Flexible Embedded Vision. JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL, IMAGE, AND VIDEO TECHNOLOGY, 84(3), 339-354 [10.1007/s11265-015-1070-9].
PULP: A Ultra-Low Power Parallel Accelerator for Energy-Efficient and Flexible Embedded Vision
CONTI, FRANCESCO;ROSSI, DAVIDE;LOI, IGOR;BENINI, LUCA
2016
Abstract
Novel pervasive devices such as smart surveillance cameras and autonomous micro-UAVs could greatly benefit from the availability of a computing device supporting embedded computer vision at a very low power budget. To this end, we propose PULP (Parallel processing Ultra-Low Power platform), an architecture built on clusters of tightly-coupled OpenRISC ISA cores, with advanced techniques for fast performance and energy scalability that exploit the capabilities of the STMicroelectronics UTBB FD-SOI 28nm technology. We show that PULP performance can be scaled over a 1x-354x range, with a peak theoretical energy efficiency of 211 GOPS/W. We present performance results for several demanding kernels from the image processing and vision domain, with post-layout power modeling: a motion detection application that can run at an efficiency up to 192 GOPS/W (90 % of the theoretical peak); a ConvNet-based detector for smart surveillance that can be switched between 0.7 and 27fps operating modes, scaling energy consumption per frame between 1.2 and 12mJ on a 320 ×240 image; and FAST + Lucas-Kanade optical flow on a 128 ×128 image at the ultra-low energy budget of 14 μJ per frame at 60fps.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.