TPpred is a new predictor of organelle-targeting peptides based on Grammatical-Restrained Hidden Conditional Random Fields. TPpred is trained on a non-redundant dataset of proteins where the presence of a target peptide was experimentally validated, comprising 297 sequences. When tested on the 297 positive and some other 8010 negative examples, TPpred outperformed available methods in both accuracy and Matthews correlation index (96% and 0.58, respectively). Given its very low–false-positive rate (3.0%), TPpred is, therefore, well suited for large-scale analyses at the proteome level. We predicted that from ∼4 to 9% of the sequences of human, Arabidopsis thaliana and yeast proteomes contain targeting peptides and are, therefore, likely to be localized in mitochondria and plastids. TPpred predictions correlate to a good extent with the experimental annotation of the subcellular localization, when available. TPpred was also trained and tested to predict the cleavage site of the organelle-targeting peptide: on this task, the average error of TPpred on mitochondrial and plastidic proteins is 7 and 15 residues, respectively. This value is lower than the error reported by other methods currently available.

TPpred: a predictior of organelle-targeting peptides in eukaryotic proteins with Grammatical-Restrained Hidden Conditional Random Fields

Valentina Indio;MARTELLI, PIER LUIGI;SAVOJARDO, CASTRENSE;FARISELLI, PIERO;CASADIO, RITA
2013

Abstract

TPpred is a new predictor of organelle-targeting peptides based on Grammatical-Restrained Hidden Conditional Random Fields. TPpred is trained on a non-redundant dataset of proteins where the presence of a target peptide was experimentally validated, comprising 297 sequences. When tested on the 297 positive and some other 8010 negative examples, TPpred outperformed available methods in both accuracy and Matthews correlation index (96% and 0.58, respectively). Given its very low–false-positive rate (3.0%), TPpred is, therefore, well suited for large-scale analyses at the proteome level. We predicted that from ∼4 to 9% of the sequences of human, Arabidopsis thaliana and yeast proteomes contain targeting peptides and are, therefore, likely to be localized in mitochondria and plastids. TPpred predictions correlate to a good extent with the experimental annotation of the subcellular localization, when available. TPpred was also trained and tested to predict the cleavage site of the organelle-targeting peptide: on this task, the average error of TPpred on mitochondrial and plastidic proteins is 7 and 15 residues, respectively. This value is lower than the error reported by other methods currently available.
2013
Valentina Indio; Pier Luigi Martelli; Castrense Savojardo; Piero Fariselli; Rita Casadio
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/394371
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact