Olive oil is a very important product due to its nutritional value, sensory and antioxidant properties. National and international regulations define basic quality parameters (such as acidity and peroxide index) to discriminate high quality oils (extra virgin olive oil) from those of lower quality. The procedures to measure acidity and peroxide index are manual titration techniques requiring a laboratory environment and trained personnel. In this paper a novel technique, based on electrical impedance spectroscopy, is presented to be suitable for the realization of a simple, low-cost, mobile instrument allowing such measurements to be carried out everywhere and by anybody, with substantial improvements of the current quality control of oil producers of any dimension. The presented method has been validated on 39 olive oil samples, featuring different levels of acidity, peroxide index and total phenolic content. The results show that the emulsion conductance is the electrical parameter best suited to discriminate the oil acidity. Moreover, since the emulsion conductance is also affected by the oil storage conditions (i.e. peroxide index), the presented technique can also be proposed, in a second time, to evaluate product ageing

A novel electrochemical method for olive oil acidity determination

GROSSI, MARCO;RICCO', BRUNO;DI LECCE, GIUSEPPE;GALLINA TOSCHI, TULLIA
2013

Abstract

Olive oil is a very important product due to its nutritional value, sensory and antioxidant properties. National and international regulations define basic quality parameters (such as acidity and peroxide index) to discriminate high quality oils (extra virgin olive oil) from those of lower quality. The procedures to measure acidity and peroxide index are manual titration techniques requiring a laboratory environment and trained personnel. In this paper a novel technique, based on electrical impedance spectroscopy, is presented to be suitable for the realization of a simple, low-cost, mobile instrument allowing such measurements to be carried out everywhere and by anybody, with substantial improvements of the current quality control of oil producers of any dimension. The presented method has been validated on 39 olive oil samples, featuring different levels of acidity, peroxide index and total phenolic content. The results show that the emulsion conductance is the electrical parameter best suited to discriminate the oil acidity. Moreover, since the emulsion conductance is also affected by the oil storage conditions (i.e. peroxide index), the presented technique can also be proposed, in a second time, to evaluate product ageing
Proceedings of the 2013 5th IEEE International Workshop on Advances in Sensors and Interfaces, IWASI : June 13-14, 2013, Bari, Italy
162
167
Marco Grossi; Bruno Riccò; Giuseppe Di Lecce; Tullia Gallina Toschi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/152999
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact