Most Wearable Ultrasound (WUS) devices lack the computational power to process signals at the edge, instead relying on remote offload, which introduces latency, high power consumption, and privacy concerns. We present Maestro, a RISC-V SoC with unified Vector-Tensor Unit (VTU) and memory-coupled Fast Fourier Transform (FFT) accelerators targeting edge processing for wearable ultrasound devices, fabricated using low-cost TSMC 65nm CMOS technology. The VTU achieves peak 302GFLOPS/W and 19.8GFLOPS at FP16, while the multi-precision 16/32-bit floating-point FFT accelerator delivers peak 60.6GFLOPS/W and 3.6GFLOPS at FP16. We evaluate Maestro on a US-based gesture recognition task, achieving 1.62GFLOPS in signal processing at 26.68GFLOPS/W, and 19.52GFLOPS in Convolutional Neural Network (CNN) workloads at 298.03GFLOPS/W. Compared to a state-of-the-art SoC with a similar mission profile, Maestro achieves a 5× speedup while consuming only 12mW, with an energy consumption of 2.5mJ in a wearable US channel preprocessing and ML-based postprocessing pipeline.

Sinigaglia, M., Kiamarzi, A., Bertuletti, M., Ghionda, L., Orlandi, M., Tedeschi, R., et al. (2025). Maestro: A 302 GFLOPS/W and 19.8GFLOPS RISC-V Vector-Tensor Architecture for Wearable Ultrasound Edge Computing. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS. I, REGULAR PAPERS, 72, 1-15 [10.1109/TCSI.2025.3580939].

Maestro: A 302 GFLOPS/W and 19.8GFLOPS RISC-V Vector-Tensor Architecture for Wearable Ultrasound Edge Computing

Sinigaglia, Mattia
Primo
;
Kiamarzi, Amirhossein
Secondo
;
Ghionda, Luigi;Orlandi, Mattia;Tedeschi, Riccardo;Di Giampietro, Aurora;Tortorella, Yvan;Bertaccini, Luca;Benatti, Simone;Tagliavini, Giuseppe;Benini, Luca;Conti, Francesco
Penultimo
;
Rossi, Davide
Ultimo
2025

Abstract

Most Wearable Ultrasound (WUS) devices lack the computational power to process signals at the edge, instead relying on remote offload, which introduces latency, high power consumption, and privacy concerns. We present Maestro, a RISC-V SoC with unified Vector-Tensor Unit (VTU) and memory-coupled Fast Fourier Transform (FFT) accelerators targeting edge processing for wearable ultrasound devices, fabricated using low-cost TSMC 65nm CMOS technology. The VTU achieves peak 302GFLOPS/W and 19.8GFLOPS at FP16, while the multi-precision 16/32-bit floating-point FFT accelerator delivers peak 60.6GFLOPS/W and 3.6GFLOPS at FP16. We evaluate Maestro on a US-based gesture recognition task, achieving 1.62GFLOPS in signal processing at 26.68GFLOPS/W, and 19.52GFLOPS in Convolutional Neural Network (CNN) workloads at 298.03GFLOPS/W. Compared to a state-of-the-art SoC with a similar mission profile, Maestro achieves a 5× speedup while consuming only 12mW, with an energy consumption of 2.5mJ in a wearable US channel preprocessing and ML-based postprocessing pipeline.
2025
Sinigaglia, M., Kiamarzi, A., Bertuletti, M., Ghionda, L., Orlandi, M., Tedeschi, R., et al. (2025). Maestro: A 302 GFLOPS/W and 19.8GFLOPS RISC-V Vector-Tensor Architecture for Wearable Ultrasound Edge Computing. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS. I, REGULAR PAPERS, 72, 1-15 [10.1109/TCSI.2025.3580939].
Sinigaglia, Mattia; Kiamarzi, Amirhossein; Bertuletti, Marco; Ghionda, Luigi; Orlandi, Mattia; Tedeschi, Riccardo; Di Giampietro, Aurora; Tortorella, ...espandi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1029539
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact