Several interesting problems in multirobot systems can be cast in the framework of distributed optimization. Examples include multirobot task allocation, vehicle routing, target protection, and surveillance. While the theoretical analysis of distributed optimization algorithms has received significant attention, its application to cooperative robotics has not been investigated in detail. In this article, we show how notable scenarios in cooperative robotics can be addressed by suitable distributed optimization setups. Specifically, after a brief introduction on the widely investigated consensus optimization (most suited for data analytics) and on the partition-based setup (matching the graph structure in the optimization), we focus on two distributed settings modeling several scenarios in cooperative robotics, i.e., the so-called constraint-coupled and aggregative optimization frameworks. For each one, we consider use-case applications, and we discuss tailored distributed algorithms with their convergence properties. Then, we revise state-of-the-art toolboxes allowing for the implementation of distributed schemes on real networks of robots without central coordinators. For each use case, we discuss its implementation in these toolboxes and provide simulations and real experiments on networks of heterogeneous robots.
Testa, A., Carnevale, G., Notarstefano, G. (2025). A Tutorial on Distributed Optimization for Cooperative Robotics: From Setups and Algorithms to Toolboxes and Research Directions. PROCEEDINGS OF THE IEEE, 113(1), 40-65 [10.1109/jproc.2025.3557698].
A Tutorial on Distributed Optimization for Cooperative Robotics: From Setups and Algorithms to Toolboxes and Research Directions
Testa, Andrea
;Carnevale, Guido;Notarstefano, Giuseppe
2025
Abstract
Several interesting problems in multirobot systems can be cast in the framework of distributed optimization. Examples include multirobot task allocation, vehicle routing, target protection, and surveillance. While the theoretical analysis of distributed optimization algorithms has received significant attention, its application to cooperative robotics has not been investigated in detail. In this article, we show how notable scenarios in cooperative robotics can be addressed by suitable distributed optimization setups. Specifically, after a brief introduction on the widely investigated consensus optimization (most suited for data analytics) and on the partition-based setup (matching the graph structure in the optimization), we focus on two distributed settings modeling several scenarios in cooperative robotics, i.e., the so-called constraint-coupled and aggregative optimization frameworks. For each one, we consider use-case applications, and we discuss tailored distributed algorithms with their convergence properties. Then, we revise state-of-the-art toolboxes allowing for the implementation of distributed schemes on real networks of robots without central coordinators. For each use case, we discuss its implementation in these toolboxes and provide simulations and real experiments on networks of heterogeneous robots.| File | Dimensione | Formato | |
|---|---|---|---|
|
main_multirobot_tutorial.pdf
Open Access dal 19/10/2025
Tipo:
Postprint / Author's Accepted Manuscript (AAM) - versione accettata per la pubblicazione dopo la peer-review
Licenza:
Licenza per accesso libero gratuito
Dimensione
4.66 MB
Formato
Adobe PDF
|
4.66 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


