TOSI, FABIO
 Distribuzione geografica
Continente #
AS - Asia 2.848
NA - Nord America 2.742
EU - Europa 2.489
SA - Sud America 145
AF - Africa 143
Continente sconosciuto - Info sul continente non disponibili 2
OC - Oceania 2
Totale 8.371
Nazione #
US - Stati Uniti d'America 2.690
SG - Singapore 998
CN - Cina 866
GB - Regno Unito 819
IT - Italia 702
HK - Hong Kong 284
DE - Germania 271
VN - Vietnam 193
KR - Corea 136
IN - India 123
FR - Francia 118
BR - Brasile 105
NL - Olanda 90
FI - Finlandia 82
RU - Federazione Russa 81
IE - Irlanda 74
SE - Svezia 66
CI - Costa d'Avorio 56
TR - Turchia 52
JP - Giappone 48
JO - Giordania 45
TG - Togo 41
ID - Indonesia 38
CA - Canada 36
AR - Argentina 32
BG - Bulgaria 29
ZA - Sudafrica 28
CH - Svizzera 22
UA - Ucraina 19
AT - Austria 18
PL - Polonia 15
ES - Italia 13
TW - Taiwan 13
HR - Croazia 10
IL - Israele 10
IR - Iran 10
EE - Estonia 9
MX - Messico 9
RO - Romania 9
BE - Belgio 7
PT - Portogallo 7
GR - Grecia 6
SC - Seychelles 6
BD - Bangladesh 5
CZ - Repubblica Ceca 5
SI - Slovenia 5
DO - Repubblica Dominicana 3
IQ - Iraq 3
LK - Sri Lanka 3
LT - Lituania 3
MY - Malesia 3
AE - Emirati Arabi Uniti 2
AU - Australia 2
BW - Botswana 2
CL - Cile 2
EC - Ecuador 2
KE - Kenya 2
KH - Cambogia 2
LB - Libano 2
LU - Lussemburgo 2
MA - Marocco 2
PH - Filippine 2
PY - Paraguay 2
RS - Serbia 2
SN - Senegal 2
TH - Thailandia 2
UZ - Uzbekistan 2
A2 - ???statistics.table.value.countryCode.A2??? 1
AL - Albania 1
BS - Bahamas 1
BY - Bielorussia 1
DZ - Algeria 1
EG - Egitto 1
GA - Gabon 1
GE - Georgia 1
GT - Guatemala 1
HU - Ungheria 1
JM - Giamaica 1
KG - Kirghizistan 1
KZ - Kazakistan 1
ME - Montenegro 1
PE - Perù 1
PK - Pakistan 1
SA - Arabia Saudita 1
SK - Slovacchia (Repubblica Slovacca) 1
TJ - Tagikistan 1
TN - Tunisia 1
TT - Trinidad e Tobago 1
VE - Venezuela 1
XK - ???statistics.table.value.countryCode.XK??? 1
Totale 8.371
Città #
Southend 764
Singapore 680
Dallas 273
Hong Kong 259
Hefei 252
Ashburn 238
Santa Clara 213
Chandler 199
Bologna 189
Fairfield 169
Wilmington 139
Seoul 116
Beijing 93
Woodbridge 89
Seattle 80
Boardman 77
Princeton 76
Cambridge 75
Dublin 74
Houston 72
Abidjan 56
Ho Chi Minh City 56
Los Angeles 53
Helsinki 52
Milan 50
Redmond 50
Hanoi 46
Amman 45
Istanbul 44
Ann Arbor 42
Lomé 41
Buffalo 34
Tokyo 34
Chicago 31
Rome 31
Berlin 30
Sofia 29
Jakarta 28
Westminster 28
Munich 27
Redondo Beach 27
Amsterdam 26
Medford 25
Bengaluru 22
Guangzhou 21
Nanjing 21
Frankfurt am Main 19
Nuremberg 19
Shanghai 19
Des Moines 18
Jinan 18
Lappeenranta 17
Paris 17
Redwood City 17
Florence 16
Dong Ket 15
Shenyang 15
Modena 14
Cesena 13
Ravenna 13
San Diego 13
Turku 13
London 12
New York 12
Reggio Emilia 12
Toronto 12
Turin 12
Falkenstein 11
Falls Church 11
São Paulo 11
Zhengzhou 11
Changsha 10
Imola 10
Vienna 10
Xi'an 10
Padova 9
Chengdu 8
Hyderabad 8
Taipei 8
Boston 7
Brussels 7
Council Bluffs 7
Haiphong 7
Hebei 7
Johannesburg 7
Phoenix 7
Saint Petersburg 7
Wuhan 7
Alzano Lombardo 6
Ancona 6
Buenos Aires 6
Castel San Pietro Terme 6
Düsseldorf 6
Forlì 6
Fremont 6
Mexico City 6
Parma 6
San Francisco 6
San Jose 6
Tianjin 6
Totale 5.644
Nome #
Leveraging a weakly adversarial paradigm for joint learning of disparity and confidence estimation 260
Distilled semantics for comprehensive scene understanding from videos 242
Reversing the cycle: self-supervised deep stereo through enhanced monocular distillation 237
Monocular Depth Perception on Microcontrollers for Edge Applications 218
Metodo per determinare la profondità da immagini mediante apprendimento auto-adattivo di una rete neurale e relativo sistema 216
Continual Adaptation for Deep Stereo 202
Energy-Quality Scalable Monocular Depth Estimation on Low-Power CPUs 195
The Monocular Depth Estimation Challenge 192
Self-adapting confidence estimation for stereo 184
Confidence Estimation for ToF and Stereo Sensors and Its Application to Depth Data Fusion 179
Enabling Image-Based Streamflow Monitoring at the Edge 179
On the Synergies between Machine Learning and Binocular Stereo for Depth Estimation from Images: a Survey 175
Method for determining the confidence of a disparity map through a self-adaptive learning of a neural network, and sensor system thereof 173
Booster: A Benchmark for Depth From Images of Specular and Transparent Surfaces 166
Generative Adversarial Networks for unsupervised monocular depth prediction 165
Learning end-to-end scene flow by distilling single tasks knowledge 163
Beyond local reasoning for stereo confidence estimation with deep learning 162
Real-time self-adaptive deep stereo 161
GO-SLAM: Global Optimization for Consistent 3D Instant Reconstruction 160
Real-Time Single Image Depth Perception in the Wild with Handheld Devices 156
Metodo di determinazione della profondità da immagini e relativo sistema 152
Efficient confidence measures for embedded stereo 151
Quantitative Evaluation of Confidence Measures in a Machine Learning World 147
Optical Tracking Velocimetry (OTV): Leveraging Optical Flow and Trajectory-Based Filtering for Surface Streamflow Observations 147
Enabling monocular depth perception at the very edge 145
Learning confidence measures in the wild 142
On the confidence of stereo matching in a deep-learning era: a quantitative evaluation 142
Geometry meets semantic for semi-supervised monocular depth estimation 141
RGB-Multispectral Matching: Dataset, Learning Methodology, Evaluation 138
NTIRE 2023 Challenge on HR Depth From Images of Specular and Transparent Surfaces 138
Learning a confidence measure in the disparity domain from O(1) features 138
Learning monocular depth estimation infusing traditional stereo knowledge 136
The Second Monocular Depth Estimation Challenge 131
On the Uncertainty of Self-Supervised Monocular Depth Estimation 131
GasMono: Geometry-Aided Self-Supervised Monocular Depth Estimation for Indoor Scenes 129
Even More Confident Predictions with Deep Machine-Learning 129
A Survey on Deep Stereo Matching in the Twenties 127
Learning Monocular Depth Estimation with Unsupervised Trinocular Assumptions 124
Towards real-time unsupervised monocular depth estimation on CPU 123
On-Site Adaptation for Monocular Depth Estimation with a Static Camera 121
Lightweight Self-Supervised Depth Estimation with few-beams LiDAR Data 119
Enabling Energy-Efficient Unsupervised Monocular Depth Estimation on ARMv7-Based Platforms 118
Real-Time Self-Supervised Monocular Depth Estimation Without GPU 118
Active Stereo Without Pattern Projector 116
Good cues to learn from scratch a confidence measure for passive depth sensors 114
On the deployment of out-of-the-box embedded devices for self-powered river surface flow velocity monitoring at the edge 107
Neural Disparity Refinement for Arbitrary Resolution Stereo 107
Learning Depth Estimation for Transparent and Mirror Surfaces 106
SMD-Nets: Stereo Mixture Density Networks 100
Depth super-resolution from explicit and implicit high-frequency features 100
Guided stereo matching 90
Open Challenges in Deep Stereo: the Booster Dataset 90
NTIRE 2024 Challenge on HR Depth from Images of Specular and Transparent Surfaces 88
Leveraging confident points for accurate depth refinement on embedded systems 88
MonoViT: Self-Supervised Monocular Depth Estimation with a Vision Transformer 82
NeRF-Supervised Deep Stereo 82
Neural Disparity Refinement 80
Cross-Spectral Neural Radiance Fields 79
Diffusion Models for Monocular Depth Estimation: Overcoming Challenging Conditions 75
Self-supervised depth super-resolution with contrastive multiview pre-training 59
Revisiting Depth Completion from a Stereo Matching Perspective for Cross-domain Generalization 50
Self-Evolving Depth-Supervised 3D Gaussian Splatting from Rendered Stereo Pairs 41
Federated Online Adaptation for Deep Stereo 39
The Third Monocular Depth Estimation Challenge 36
Totale 8.601
Categoria #
all - tutte 26.335
article - articoli 0
book - libri 0
conference - conferenze 0
curatela - curatele 0
other - altro 0
patent - brevetti 0
selected - selezionate 0
volume - volumi 0
Totale 26.335


Totale Lug Ago Sett Ott Nov Dic Gen Feb Mar Apr Mag Giu
2020/2021860 0 0 0 0 0 78 97 105 204 108 141 127
2021/20221.011 55 49 66 43 131 62 42 67 111 27 225 133
2022/2023989 67 147 52 120 57 103 42 53 190 37 49 72
2023/2024503 11 54 26 21 22 59 40 65 16 35 75 79
2024/20251.931 99 172 128 128 316 82 222 55 46 94 175 414
2025/20262.364 344 470 606 338 423 183 0 0 0 0 0 0
Totale 8.601