This work deals with the implementation of energy-efficient monocular depth estimation using a low-cost CPU for low-power embedded systems. It first describes the PyD-Net depth estimation network, which consists of a lightweight CNN able to approach state-of-the-art accuracy with ultra-low resource usage. Then it proposes an accuracy-driven complexity reduction strategy based on a hardware-friendly fixed-point quantization. Finally, it introduces the low-level optimization enabling effective use of integer neural kernels. The objective is threefold: (i) prove the efficiency of the new quantization flow on a depth estimation network, that is, the capability to retaining the accuracy reached by floating-point arithmetic using 16- and 8-bit integers, (ii) demonstrate the portability of the quantized model into a general-purpose 32-bit RISC architecture of the ARM Cortex family, (iii) quantify the accuracy-energy tradeoff of unsupervised monocular estimation to establish its use in the embedded domain. The experiments have been run on a Raspberry PI board powered by a Broadcom BCM2837 chipset. A parametric analysis conducted over the KITTI date-set shows marginal accuracy loss with 16-bit (8-bit) integers and energy savings up to 6.55× (9.23×) w.r.t. floating-point. Compared to high-end CPU and GPU the proposed solution improves scalability.
Peluso, V., Cipolletta, A., Calimera, A., Poggi, M., Tosi, F., Mattoccia, S. (2019). Enabling Energy-Efficient Unsupervised Monocular Depth Estimation on ARMv7-Based Platforms. Institute of Electrical and Electronics Engineers Inc. [10.23919/DATE.2019.8714893].
Enabling Energy-Efficient Unsupervised Monocular Depth Estimation on ARMv7-Based Platforms
Poggi M.;Tosi F.;Mattoccia S.
2019
Abstract
This work deals with the implementation of energy-efficient monocular depth estimation using a low-cost CPU for low-power embedded systems. It first describes the PyD-Net depth estimation network, which consists of a lightweight CNN able to approach state-of-the-art accuracy with ultra-low resource usage. Then it proposes an accuracy-driven complexity reduction strategy based on a hardware-friendly fixed-point quantization. Finally, it introduces the low-level optimization enabling effective use of integer neural kernels. The objective is threefold: (i) prove the efficiency of the new quantization flow on a depth estimation network, that is, the capability to retaining the accuracy reached by floating-point arithmetic using 16- and 8-bit integers, (ii) demonstrate the portability of the quantized model into a general-purpose 32-bit RISC architecture of the ARM Cortex family, (iii) quantify the accuracy-energy tradeoff of unsupervised monocular estimation to establish its use in the embedded domain. The experiments have been run on a Raspberry PI board powered by a Broadcom BCM2837 chipset. A parametric analysis conducted over the KITTI date-set shows marginal accuracy loss with 16-bit (8-bit) integers and energy savings up to 6.55× (9.23×) w.r.t. floating-point. Compared to high-end CPU and GPU the proposed solution improves scalability.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.