Teucrium chamaedrys L. is a typical European–Mediterranean species of the genus Teucrium. Among the phenolic compounds belonging to henylethanoid glycosides (PGs), teucrioside (TS) is only found in this species, and it was previously demonstrated to be produced by in vitro-elicited cell cultures at levels higher than those found in leaves. However, T. chamaedrys cell suspension extracts (Cell-Ex) and pure TS have not been investigated yet for any biological effects. In this study, we evaluated the antioxidant and anti-melanogenesis activity of both Cell-Ex and TS in B16-F10 mouse melanoma cells. The results showed that Cell-Ex inhibited the reactive oxygen species formation evoked in B16-F10 cells by tert-butyl hydroperoxide and 5 J/cm2 of UVA, as well as the melanin increase stimulated by α-MSH or 20 J/cm2 of UVA. In parallel, a TS concentration equivalent to that present in Cell-Ex recorded the same biological effect profile, suggesting the main contribution of TS to the antioxidant and anti-melanogenic properties of Cell-Ex. Both Cell-Ex and TS also modulated the melanogenesis pathway through their ability to inhibit the tyrosinase activity both in a cell-free system and in B16-F10 cells stimulated by α-MSH. These results support the potential cosmeceutical use of Cell-Ex for protection against photooxidative damage and hyperpigmentation.

Pruccoli, L., Nicolini, B., Lianza, M., Teti, G., Falconi, M., Tarozzi, A., et al. (2024). Antioxidant and Anti-Melanogenesis Effects of Teucrium chamaedrys L. Cell Suspension Extract and Its Main Phenylethanoid Glycoside in B16-F10 Cells. PLANTS, 13(6), 1-9 [10.3390/plants13060808].

Antioxidant and Anti-Melanogenesis Effects of Teucrium chamaedrys L. Cell Suspension Extract and Its Main Phenylethanoid Glycoside in B16-F10 Cells

Pruccoli Letizia
Co-primo
;
Nicolini Benedetta
Co-primo
;
Lianza Mariacaterina;Teti Gabriella;Falconi Mirella;Tarozzi Andrea
;
Antognoni Fabiana
2024

Abstract

Teucrium chamaedrys L. is a typical European–Mediterranean species of the genus Teucrium. Among the phenolic compounds belonging to henylethanoid glycosides (PGs), teucrioside (TS) is only found in this species, and it was previously demonstrated to be produced by in vitro-elicited cell cultures at levels higher than those found in leaves. However, T. chamaedrys cell suspension extracts (Cell-Ex) and pure TS have not been investigated yet for any biological effects. In this study, we evaluated the antioxidant and anti-melanogenesis activity of both Cell-Ex and TS in B16-F10 mouse melanoma cells. The results showed that Cell-Ex inhibited the reactive oxygen species formation evoked in B16-F10 cells by tert-butyl hydroperoxide and 5 J/cm2 of UVA, as well as the melanin increase stimulated by α-MSH or 20 J/cm2 of UVA. In parallel, a TS concentration equivalent to that present in Cell-Ex recorded the same biological effect profile, suggesting the main contribution of TS to the antioxidant and anti-melanogenic properties of Cell-Ex. Both Cell-Ex and TS also modulated the melanogenesis pathway through their ability to inhibit the tyrosinase activity both in a cell-free system and in B16-F10 cells stimulated by α-MSH. These results support the potential cosmeceutical use of Cell-Ex for protection against photooxidative damage and hyperpigmentation.
2024
Pruccoli, L., Nicolini, B., Lianza, M., Teti, G., Falconi, M., Tarozzi, A., et al. (2024). Antioxidant and Anti-Melanogenesis Effects of Teucrium chamaedrys L. Cell Suspension Extract and Its Main Phenylethanoid Glycoside in B16-F10 Cells. PLANTS, 13(6), 1-9 [10.3390/plants13060808].
Pruccoli, Letizia; Nicolini, Benedetta; Lianza, Mariacaterina; Teti, Gabriella; Falconi, Mirella; Tarozzi, Andrea; Antognoni, Fabiana
File in questo prodotto:
File Dimensione Formato  
plants-13-00808 (1).pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 924.08 kB
Formato Adobe PDF
924.08 kB Adobe PDF Visualizza/Apri
plants-2894275-supplementary.pdf

accesso aperto

Tipo: File Supplementare
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 259.62 kB
Formato Adobe PDF
259.62 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/997450
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact