Understanding the allosteric mechanisms within biomolecules involved in diseases is of paramount importance for drug discovery. Indeed, characterizing communication pathways and critical hotspots in signal transduction can guide a rational approach to leverage allosteric modulation for therapeutic purposes. While the atomistic signatures of allosteric processes are difficult to determine experimentally, computational methods can be a remarkable resource. Network analysis built on Molecular Dynamics simulation data is particularly suited in this respect and is gradually becoming of routine use. Herein, we collect the recent literature in the field, discussing different aspects and available options for network construction and analysis. We further highlight interesting refinements and extensions, eventually providing our perspective on this topic.
Bernetti, M., Bosio, S., Bresciani, V., Falchi, F., Masetti, M. (2024). Probing allosteric communication with combined molecular dynamics simulations and network analysis. CURRENT OPINION IN STRUCTURAL BIOLOGY, 86, 1-10 [10.1016/j.sbi.2024.102820].
Probing allosteric communication with combined molecular dynamics simulations and network analysis
Bosio, Stefano;Bresciani, Veronica;Falchi, Federico;Masetti, Matteo
2024
Abstract
Understanding the allosteric mechanisms within biomolecules involved in diseases is of paramount importance for drug discovery. Indeed, characterizing communication pathways and critical hotspots in signal transduction can guide a rational approach to leverage allosteric modulation for therapeutic purposes. While the atomistic signatures of allosteric processes are difficult to determine experimentally, computational methods can be a remarkable resource. Network analysis built on Molecular Dynamics simulation data is particularly suited in this respect and is gradually becoming of routine use. Herein, we collect the recent literature in the field, discussing different aspects and available options for network construction and analysis. We further highlight interesting refinements and extensions, eventually providing our perspective on this topic.File | Dimensione | Formato | |
---|---|---|---|
2024_Bernetti_OPEN_ACCESS.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione
1.25 MB
Formato
Adobe PDF
|
1.25 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.