This study characterizes the mechanical performance of the AlSi10Mg alloy produced by powder bed fusion-laser beam (PBF-LB) subjected to two combined cycles consisting of multilayer coating deposition (electroless nickel (Ni-P) + diamond-like carbon (DLC)) and heat treatment. In particular, the DLC deposition phase replaces the artificial aging step in the T5 and T6 heat treatments, obtaining the following post-production cycles: (i) Ni-P + DLC deposition and (ii) rapid solution (SHTR) (10 min at 510 degrees C) before Ni-P + DLC deposition. Microstructural characterization shows no appreciable modifications in the morphology and dimensions of the hard Si-rich phase of the eutectic network and secondary spheroidal Si phase. However, overaging phenomena induced by DLC coating deposition and differences in elastic-plastic properties between the multilayer coating and the PBF-LB AlSi10Mg substrate lead to a reduction in tensile strength by up to 31% and a significant decrease in ductility by up to 58%. In contrast, higher resistance to crack opening thanks to improved surface hardness and residual compressive stresses of the coating and reduced defect sensitivity of the substrate increase the fatigue resistance by 54% in T5-coated alloy and 24% in T6R-coated alloy. Moreover, the coating remains well adherent to the substrate during fatigue testing, not becoming a source of fatigue cracks.
Di Egidio, G., Martini, C., Ceschini, L., Morri, A. (2023). Influence of Electroless Nickel—DLC (Diamond-like Carbon) Multilayer Coating on the Mechanical Performance of the Heat-Treated AlSi10Mg Alloy Produced by Powder Bed Fusion-Laser Beam. MATERIALS, 16(9), 1-20 [10.3390/ma16093313].
Influence of Electroless Nickel—DLC (Diamond-like Carbon) Multilayer Coating on the Mechanical Performance of the Heat-Treated AlSi10Mg Alloy Produced by Powder Bed Fusion-Laser Beam
Di Egidio, Gianluca;Martini, Carla
;Ceschini, Lorella;Morri, Alessandro
2023
Abstract
This study characterizes the mechanical performance of the AlSi10Mg alloy produced by powder bed fusion-laser beam (PBF-LB) subjected to two combined cycles consisting of multilayer coating deposition (electroless nickel (Ni-P) + diamond-like carbon (DLC)) and heat treatment. In particular, the DLC deposition phase replaces the artificial aging step in the T5 and T6 heat treatments, obtaining the following post-production cycles: (i) Ni-P + DLC deposition and (ii) rapid solution (SHTR) (10 min at 510 degrees C) before Ni-P + DLC deposition. Microstructural characterization shows no appreciable modifications in the morphology and dimensions of the hard Si-rich phase of the eutectic network and secondary spheroidal Si phase. However, overaging phenomena induced by DLC coating deposition and differences in elastic-plastic properties between the multilayer coating and the PBF-LB AlSi10Mg substrate lead to a reduction in tensile strength by up to 31% and a significant decrease in ductility by up to 58%. In contrast, higher resistance to crack opening thanks to improved surface hardness and residual compressive stresses of the coating and reduced defect sensitivity of the substrate increase the fatigue resistance by 54% in T5-coated alloy and 24% in T6R-coated alloy. Moreover, the coating remains well adherent to the substrate during fatigue testing, not becoming a source of fatigue cracks.File | Dimensione | Formato | |
---|---|---|---|
materials-16-03313_rev.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Creative commons
Dimensione
2.77 MB
Formato
Adobe PDF
|
2.77 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.