Skid steering vehicles rely on tracks slipping to perform turning maneuvers. In this context, the estimation of the right amount of slip turns out to be significant to correctly perform precise movements. In a typical agricultural scenario, with rough terrain and narrow navigating spaces, a reliable slip estimation is crucial to perform safe motions. In this work, we propose a novel Gaussian Process approach to slip estimation in a tracked wheel robots by showing experimental results obtained from our prototype robotic platform.

Gentilini, L., Mengoli, D., Rossi, S., Marconi, L. (2022). Data-Driven Model Predictive Control for Skid-Steering Unmanned Ground Vehicles. 345 E 47TH ST, NEW YORK, NY 10017 USA : IEEE [10.1109/metroagrifor55389.2022.9964544].

Data-Driven Model Predictive Control for Skid-Steering Unmanned Ground Vehicles

Gentilini, Lorenzo;Mengoli, Dario
;
Rossi, Simone;Marconi, Lorenzo
2022

Abstract

Skid steering vehicles rely on tracks slipping to perform turning maneuvers. In this context, the estimation of the right amount of slip turns out to be significant to correctly perform precise movements. In a typical agricultural scenario, with rough terrain and narrow navigating spaces, a reliable slip estimation is crucial to perform safe motions. In this work, we propose a novel Gaussian Process approach to slip estimation in a tracked wheel robots by showing experimental results obtained from our prototype robotic platform.
2022
Proceedings of 2022 IEEE Workshop on Metrology for Agriculture and Forestry (MetroAgriFor)
80
85
Gentilini, L., Mengoli, D., Rossi, S., Marconi, L. (2022). Data-Driven Model Predictive Control for Skid-Steering Unmanned Ground Vehicles. 345 E 47TH ST, NEW YORK, NY 10017 USA : IEEE [10.1109/metroagrifor55389.2022.9964544].
Gentilini, Lorenzo; Mengoli, Dario; Rossi, Simone; Marconi, Lorenzo
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/959952
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact