We approach the task of assessing the suitability of a source text for translation by transferring the knowledge from established MT evaluation metrics to a model able to predict MT quality a priori from the source text alone. To open the door to experiments in this regard, we depart from reference English-German parallel corpora to build a corpus of 14,253 source text-quality score tuples. The tuples include four state-of-the-art metrics: cushLEPOR, BERTScore, COMET, and TransQuest. With this new resource at hand, we fine-tune XLM-RoBERTa, both in a single-task and a multi-task setting, to predict these evaluation scores from the source text alone. Results for this methodology are promising, with the single-task model able to approximate well-established MT evaluation and quality estimation metrics - without looking at the actual machine translations - achieving low RMSE values in the [0.1-0.2] range and Pearson correlation scores up to 0.688.

Fernicola Francesco, B.S. (2023). Return to the Source: Assessing Machine Translation Suitability. Tampere : European Association for Machine Translation.

Return to the Source: Assessing Machine Translation Suitability

Fernicola Francesco
Primo
;
Bernardini Silvia
Secondo
;
Garcea Federico;Ferraresi Adriano;Barrón-Cedeño Alberto
Ultimo
2023

Abstract

We approach the task of assessing the suitability of a source text for translation by transferring the knowledge from established MT evaluation metrics to a model able to predict MT quality a priori from the source text alone. To open the door to experiments in this regard, we depart from reference English-German parallel corpora to build a corpus of 14,253 source text-quality score tuples. The tuples include four state-of-the-art metrics: cushLEPOR, BERTScore, COMET, and TransQuest. With this new resource at hand, we fine-tune XLM-RoBERTa, both in a single-task and a multi-task setting, to predict these evaluation scores from the source text alone. Results for this methodology are promising, with the single-task model able to approximate well-established MT evaluation and quality estimation metrics - without looking at the actual machine translations - achieving low RMSE values in the [0.1-0.2] range and Pearson correlation scores up to 0.688.
2023
Proceedings of the 24th Annual Conference of the European Association for Machine Translation
79
89
Fernicola Francesco, B.S. (2023). Return to the Source: Assessing Machine Translation Suitability. Tampere : European Association for Machine Translation.
Fernicola Francesco, Bernardini Silvia, Garcea Federico, Ferraresi Adriano, Barrón-Cedeño Alberto
File in questo prodotto:
File Dimensione Formato  
2023.eamt-1.9.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non opere derivate (CCBYND)
Dimensione 267.7 kB
Formato Adobe PDF
267.7 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/953418
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact