This paper provides a necessary and sufficient condition for asymptotic efficiency of a nonparametric estimator of the generalised autocovariance function of a stationary random process. The generalised autocovariance function is the inverse Fourier transform of a power transformation of the spectral density and encompasses the traditional and inverse autocovariance functions as particular cases. A nonparametric estimator is based on the inverse discrete Fourier transform of the power transformation of the pooled periodogram. We consider two cases: the fixed bandwidth design and the adaptive bandwidth design. The general result on the asymptotic efficiency, established for linear processes, is then applied to the class of stationary ARMA processes and its implications are discussed. Finally, we illustrate that for a class of contrast functionals and spectral densities, the minimum contrast estimator of the spectral density satisfies a Yule-Walker system of equations in the generalised autocovariance estimator.

Luati A., Papagni F., Proietti T. (2024). Efficient nonparametric estimation of generalised autocovariances. JOURNAL OF NONPARAMETRIC STATISTICS, 36(1), 23-38 [10.1080/10485252.2023.2252527].

Efficient nonparametric estimation of generalised autocovariances

Luati A.
;
Papagni F.;Proietti T.
2024

Abstract

This paper provides a necessary and sufficient condition for asymptotic efficiency of a nonparametric estimator of the generalised autocovariance function of a stationary random process. The generalised autocovariance function is the inverse Fourier transform of a power transformation of the spectral density and encompasses the traditional and inverse autocovariance functions as particular cases. A nonparametric estimator is based on the inverse discrete Fourier transform of the power transformation of the pooled periodogram. We consider two cases: the fixed bandwidth design and the adaptive bandwidth design. The general result on the asymptotic efficiency, established for linear processes, is then applied to the class of stationary ARMA processes and its implications are discussed. Finally, we illustrate that for a class of contrast functionals and spectral densities, the minimum contrast estimator of the spectral density satisfies a Yule-Walker system of equations in the generalised autocovariance estimator.
2024
Luati A., Papagni F., Proietti T. (2024). Efficient nonparametric estimation of generalised autocovariances. JOURNAL OF NONPARAMETRIC STATISTICS, 36(1), 23-38 [10.1080/10485252.2023.2252527].
Luati A.; Papagni F.; Proietti T.
File in questo prodotto:
File Dimensione Formato  
Efficient nonparametric estimation of generalised autocovariances.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 1.53 MB
Formato Adobe PDF
1.53 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/948866
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact