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ABSTRACT
This paper provides a necessary and sufficient condition for asymp-
totic efficiency of a nonparametric estimator of the generalised auto-
covariance function of a stationary random process. The generalised
autocovariance function is the inverse Fourier transform of a power
transformation of the spectral density and encompasses the tradi-
tional and inverse autocovariance functions as particular cases. A
nonparametric estimator is based on the inverse discrete Fourier
transform of the power transformation of the pooled periodogram.
We consider two cases: the fixed bandwidth design and the adaptive
bandwidth design. The general result on the asymptotic efficiency,
established for linear processes, is then applied to the class of station-
ary ARMA processes and its implications are discussed. Finally, we
illustrate that for a class of contrast functionals and spectral densities,
the minimum contrast estimator of the spectral density satisfies a
Yule–Walker system of equations in the generalised autocovariance
estimator.

ARTICLE HISTORY
Received 5 April 2023
Accepted 22 August 2023

KEYWORDS
Cramér–Rao lower bound;
frequency domain; minimum
contrast estimation;
periodogram

The autocovariance function and its Fourier transform, the spectral density function, char-
acterise the temporal dependence structure of a stationary stochastic process and are of
fundamental importance in time series analysis and prediction. For Gaussian stationary
processes they provide, along with the mean, a complete characterisation of the probabil-
ity distribution of the process and, for linear processes, the basic ingredients for optimal
(minimum mean squared error) prediction, based on time series observations.

The autocovariance function is estimated nonparametrically by the sample autocovari-
ance function. This estimator has a long tradition in time series analysis, and its properties
are demonstrated and discussed in time series textbooks, such as, for instance, Han-
nan (1970), Anderson (1994), and Brockwell and Davis (1991, ch. 7), where it is shown
that, under regularity conditions, it has an asymptotically normal distribution and that the
elements of the asymptotic covariancematrix are given by the celebrated Bartlett’s formula.
Wu (2011) has extended the theory to a class of nonlinear processes.

The literature has further addressed the important question as to what classes of para-
metric linear processes admit the sample autocovariance as an asymptotically efficient

CONTACT Alessandra Luati a.luati@imperial.ac.uk

© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License
(http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium,
provided the original work is properly cited, and is not altered, transformed, or built upon in anyway. The terms onwhich this article has been
published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/10485252.2023.2252527&domain=pdf&date_stamp=2024-02-13
mailto:a.luati@imperial.ac.uk


24 A. LUATI ET AL.

estimator, i.e. an estimatorwhose asymptotic variance equals theCramér–Rao lower bound
arising in the parametric context of maximum likelihood or quasi maximum likelihood
estimation.

The reverse problem of determining for which spectral models a given fundamen-
tal statistics (the sample covariance) is asymptotically efficient has been investigated by
Porat (1987) for Gaussian autoregressive (AR) moving average (MA) mixed processes,
based on state–space representations and matrix Lyapunov equation theory. For Gaussian
ARMA(r, q) processes with r ≥ q the sample autocovariances are asymptotically efficient
only in a restricted number of cases, while if q > r none of the sample autocovariances is
asymptotically efficient. See also Walker (1995) for an alternative derivation of this result.
This implies that the variance and the first r autocovariances of a pure AR(r) process are
efficiently estimated by the sample autocovariances, while for a pure MA process none
of the sample autocovariances is asymptotically efficient. Kakizawa and Taniguchi (1994)
derived, in the frequency domain, a necessary and sufficient condition for asymptotic effi-
ciency of the sample autocovariances that applies to the more general class of Gaussian
stationary processes. Kakizawa (1999) extended the previous results to the case of vec-
tor processes. Boshnakov (2005) studied the efficiency of the sample autocovariances for
processes obtained by a finite linear transformation of a pure autoregressive process.

The generalised autocovariance (GACV) function was defined in Proietti and
Luati (2015) as the inverse Fourier transform of the pth power of the spectral density
function. It encompasses the traditional autocovariance function (p = 1) and the inverse
autocovariance function (Cleveland 1972), which is the sequence of coefficients associated
with the Fourier expansion of the inverse spectrum (p = −1). The GACV with nonin-
teger p is a powerful tool for various purposes, including feature extraction and model
identification, in the same spirit as in the approach proposed by Xia and Tong (2011). It
can also be used for the specification of white noise tests and goodness of fit tests, related
to the Hong (1996) and Chen and Deo (2004) test statistics, as well as for clustering and
discriminant analysis of time series, in that a distance measure, nesting the Euclidean dis-
tance (p = 1) and theHellinger distance (p = 1/2), can be defined based on the generalised
autocovariances of two different stochastic processes, see Proietti and Luati (2015).

FollowingHannan andNicholls (1977) and Luati, Proietti, and Reale (2012), a nonpara-
metric estimator of theGACVwas defined inProietti andLuati (2015), based on the powers
of the pooled periodogram over m non-overlapping consecutive frequencies, where m is
a fixed pooling parameter. Consistency and asymptotic normality of the estimator were
established for linear processes. In this paper, we discuss the efficiency of this estimator
and prove that its asymptotic variance equals the Cramér–Rao lower bound only for Gaus-
sian processes and for p = 1. This limitation is due to an inefficiency factor that depends
on the combination of the power p and the pooling parameterm, and can be controlled in
finite samples.

To reach asymptotic efficiency, we introduce a novel estimator that can be interpreted
as a more general formulation of the one defined in Proietti and Luati (2015), where
the pooling parameter is allowed to grow with the sample size. We establish a necessary
and sufficient condition for asymptotic efficiency in terms of the spectral density and its
derivatives for linear processes, which nests as a particular case the result of Kakizawa
and Taniguchi (1994), which holds for p = 1 and for Gaussian processes. The results also
show that the asymptotic variance of the nonparametric estimator equals the Cramér–Rao
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lower bound for p = −1, i.e. it estimates efficiently the first q inverse autocovariances
when the true generating process is pure MA(q), thereby complementing the results by
Bhansali (1980) and Battaglia (1988). The inverse autocovariance function is useful in
interpolation problems and for the identification of ARMAmodels.

As a further contribution of the paper, the asymptotic distribution of the estimator in
the adaptive-bandwidth design is derived, following Bhansali (1980).

To illustrate our results, we consider the case of stationary ARMA(r, q) processes, in
which case some numerical examples highlight the rate of convergence to the Cramér–Rao
bound. The results obtained include, as a special case, the results for the sample autoco-
variance function by Porat (1987) and Kakizawa and Taniguchi (1994). Finally, we show
that for a class of contrast functionals and spectral densities, the minimum contrast esti-
mator of the spectral density satisfies a Yule–Walker system of equations in the original
generalised autocovariance estimator.

This paper is organised as follows. Section 1 states the main assumptions concerning
the generating process, recalls the definition of the estimator of the GACV based on the
fixed bandwidth, introduces the GACV estimator based on the adaptive bandwidth and
derives the Cramér–Rao lower bound in the two cases. The asymptotic properties of the
estimator in the case of adaptive bandwidth design are also derived in Section 1. Section 2
contains the main result of this paper, establishing a necessary and sufficient condition
for asymptotic efficiency and discussing its positioning in the literature. The asymptotic
efficiency when series are generated by ARMA processes is discussed in Section 3, with
some numerical illustrations. Section 4 provides an interpretation of the nonparametric
GACV estimator as a minimum contrast estimator (Taniguchi 1987). Proofs are deferred
to the Appendix.

1. Basic definitions and assumptions

Let {Xt}t∈T , T ⊆ Z, denote the linear causal processXt = ∑∞
j=0 ψjεt−j,ψ0 = 1,

∑
j |ψj| <

∞, where {εt}t∈T is a sequence of independent and identically distributed (i.i.d.) ran-
dom variables with zero mean and variance equal to σ 2, E(εst ) < ∞, s ≥ 1. Let γk =
E(XtXt−k), k ∈ Z, and f (ω) = (2π)−1∑∞

k=−∞ γk e−ıωk, ω ∈ [−π ,π].

Assumption 1.1: The autocovariance function of Xt, γk, and its spectral density function,
f (ω), can be expressed as functions of a s × 1 vector of parameters θ = (θ0, . . . , θs−1)

′ ∈ Rs.
For the spectral density function, denoted as fθ (ω), we assume that there exists two positive
constants, c and c, such that 0 < c ≤ fθ (ω) ≤ c < ∞, for ω ∈ [−π ,π].

For p ∈ R the generalised autocovariances, denoted as γpk, are defined as the sequence
of Fourier coefficients of [2π fθ (ω)]p, i.e.

[2π fθ (ω)]p =
∞∑

k=−∞
γpk e−ıωk,

or, equivalently,

γpk = 1
2π

∫ π

−π
[2π fθ (ω)]p cos(kω) dω. (1)
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The boundedness of fθ (ω) implies that
∫ π
−π [fθ (ω)]

p dω < ∞. Obviously, γ1k = γk, while
γ−1,k is the inverse autocovariance function, see Cleveland (1972) and Battaglia (1983).

Throughout the paper, we make the following additional assumptions.

Assumption 1.2: The partial derivatives of the generalised autocovariances, ∂γpk/∂θj, j =
0, . . . , s − 1, satisfy the summability conditions

∑∞
k=1 k|∂γpk/∂θj| < ∞.

Assumption 1.3: The s × s matrix

1
4π

∫ π

−π
∂fθ (ω)
∂θ

∂fθ (ω)
∂θ ′

dω
f 2θ (ω)

is positive definite.

Remark 1.1: Assumption 1.1 ensures the existence of a bounded parametric spectral den-
sity function, fθ (ω). Assumption 1.2 implies that fθ (ω) is differentiable with respect to
θj, and ∂fθ (ω)/∂θj is continuous and differentiable with respect to ω, with continuous
derivative. Assumption 1.3 ensures invertibility of the Fisher information matrix and thus
existence of the Cramér–Rao lower bound (Definition 1.1). We restrict our attention to
short memory processes, ruling out long memory and non-invertible models, see, e.g.
Hassler (2018).

Remark 1.2: Assumptions 1.1–1.3 are related to a specific parameterisation of the spectral
density function and, consequently, of the expected Fisher information matrix determin-
ing the Cramér–Rao lower bound in Definition 1.1. The parameterisation encompasses
the direct representation of the spectral density function in terms of the autocovariance
sequence, and that in terms of the inverse autocovariance sequence, among others, depend-
ing on the power parameter. The assumptions imply that the parameterisation is one-
to-one and continuously differentiable. Alternative one-to-one continuously differentiable
parameterisations have been proposed for different purposes, see, e.g. Barndorff-Nielsen
and Schou (1973).

Given a time series ofN consecutive observations, {xt , t = 1, 2, . . . ,N}, and their sample
mean x̄N = N−1∑N

t=1 xt , we define the periodogram

I(ωj) = 1
2πN

⏐⏐⏐⏐⏐
N∑
t=1
(xt − x̄N) exp (−iωjt)

⏐⏐⏐⏐⏐
2

,

where ωj is the Fourier frequency ωj = 2π j
N ∈ (0,π), 1 ≤ j ≤ �N−1

2 	, and �·	 denotes the
largest integer not greater than the argument.

Based on Hannan and Nicholls (1977) and Luati et al. (2012), Proietti and Luati (2015)
proposed the following nonparametric estimator of the generalised autocovariances,
obtained as the inverse discrete Fourier transform of the pth power of the bias-corrected
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pooled periodogram,

γ̂pk = 1
M

M−1∑
j=0

Y(p)j cos(ω̄jk), (2)

withM = �N−1
2m 	 and where

Y(p)j = (2π Īj)p

(m)


(m + p)
,

and

Īj =
m∑
l=1

I(ωjm+l)

is the pooled periodogram over m ≥ 1 non-overlapping consecutive frequencies, while
ω̄j = ωjm+(m+1)/2 is a mid-range frequency; 
(·) is the usual Gamma function and m
denotes the pooling parameter.

The asymptotic distribution of the estimator γ̂pk has been derived in Proietti and
Luati (2015) under the constraints embodied in the following assumption that incorporates
Assumptions A1, A3, and A4 in Proietti and Luati (2015). Specifically, asymptotic normal-
ity is derived using the Bartlett’s decomposition of the periodogram of a linear process and
a central limit theorem for the powers of the periodogram of an i.i.d. process, based on the
method of moments and on Edgeworth expansions, which require the Cramér conditions
(ii)–(iii) in Assumption 1.4. Assumption 1.4(i) serves to prove the negligibility of the term
involving the remainder in the Bartlett’s decomposition, based on bounds in probability.

Assumption 1.4: The process {Xt}t∈T is such that (i)
∑∞

j=0 j
δ |ψj| < ∞, δ > 3

4 , (ii) sup|s|≥s0
|E(eısεt )| = δ(s0) < 1 (iii)

∫∞
−∞ |E(eısεt )|r ds < ∞ for some r ≥ 1.

Let γ p = [γp0, γp1, . . . , γpK]′ be the vector of the generalised autocovariances up to lagK
and γ̂ p = [γ̂p0, γ̂p1, . . . , γ̂pK]′ the corresponding estimator in (2). Under Assumption 1.4,
it is shown in Proietti and Luati (2015) that, for m a fixed positive integer such that m +
4(p − 1) > 0,

√
N(γ̂ p − γ p)→d N(0,V),

where V = {vkl, k, l = 1, . . . ,K}, with

vkl = m
(
C(m; p, p)− 1

) 1
π

∫ π

−π
[2π fθ (ω)]2p cos(ωk) cos(ωl) dω + p2κ4γpkγpl, (3)

where κ4 is the fourth cumulant of εt and

C(m; p, p) = 
(m + 2p)
(m)

2(m + p)

.

The following definition is discussed in p. 554 of Taniguchi and Kakizawa (2000).
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Definition 1.1: Under Assumptions 1.1–1.3, the GACV estimator γ̂pk in Equation (2) is
asymptotically efficient, in the sense of Bahadur, if its asymptotic variance, vkk, equals the
Cramér–Rao lower bound

CRB{γ̂pk} = ∂γpk

∂θ ′ I−1
N (θ)

∂γpk

∂θ
, (4)

with
∂γpk

∂θ
= (2π)p−1

∫ π

−π
∂[fθ (ω)]p

∂θ
cos(kω) dω,

and where I(θ) is the Fisher information matrix

I(θ) = 1
4π

∫ π

−π
∂fθ (ω)
∂θ

∂fθ (ω)
∂θ ′

1
f 2θ (ω)

dω.

In the particular case of a Gaussian process, the term κ4 in Equation (3) is null, κ4 = 0,
and the Cramér–Rao inequality for the estimator in Equation (2) becomes

m(C(m; p, p)− 1)(2π)2p
1
π

∫ π

−π
[fθ (ω)]2p cos2 (ωk) dω

≥
{
(2π)p−1

∫ π

−π
∂[fθ (ω)]p

∂θ ′ cos(kω) dω
}

×
{

1
4π

∫ π

−π
∂fθ (ω)
∂θ

∂fθ (ω)
∂θ ′

1
f 2θ (ω)

dω

}−1 {
(2π)p−1

∫ π

−π
∂[fθ (ω)]p

∂θ ′ cos(kω) dω
}′

(5)

or, equivalently,

m(C(m; p, p)− 1)
p2

∫ π

−π
[fθ (ω)]2p cos2 (ωk) dω ≥

{∫ π

−π
[fθ (ω)]p

∂ ln fθ (ω)
∂θ ′ cos(kω) dω

}

×
{∫ π

−π
∂ ln fθ (ω)
∂θ

∂ ln fθ (ω)
∂θ ′ dω

}−1 {∫ π

−π
[fθ (ω)]p

∂ ln fθ (ω)
∂θ ′ cos(kω) dω

}′
.

We show below (Remark 2.1) that the estimator γ̂pk can be efficient, under the circum-
stances of Theorem 2.1, only if κ4 = 0, as in the case of a Gaussian process, and either
p = 1, that implies that Cm,p = m(C(m; p, p)− 1)/p2 = 1, orm large enough so that Cm,p
is close to 1. When this is not the case, under Gaussianity, Cm,p can be interpreted as an
inefficiency factor. Table 1 displays its values for different combinations of p andm: values
ofCm,p close to one are ensuredwhenm ≥ 5 for positive p, while it is required thatm ≥ 30,
for negative values of p. In Appendix A, it is shown that Cm,p converges to 1 if m tends to
infinity.

1.1. Nonparametric GACV estimation with adaptive bandwidth

We consider now a different estimation framework, in which m increases with N, hence
we write mN , but at a slower rate, i.e. mN = O(N1−α), 0 < α < 1. Correspondingly, the
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Table 1. Values of Cm,p = m[C(m, p, p)− 1]/p2 for combinations of values of p andm.

m = 1 m = 2 m = 5 m = 10 m = 15 m = 20 m = 30 m = 50

p = −2 1.42 1.29 1.18 1.10
p = −1 1.25 1.15 1.11 1.07 1.04

p = − 1
2 1.13 1.08 1.06 1.04 1.02

p = 1
2 1.02 1.01 1.01 1.01 1.00 1.00

p = 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
p = 2 1.25 1.17 1.08 1.05 1.03 1.02 1.02 1.01

number of mid-range frequencies, MN , is O(Nα), if we take MN = �(N − 1)/(2mN)	.
A more general case is one in which MN = O(Nβ), 0 < β ≤ α, which allows for an
overlapping design. In this setting, a different large sample theory is available, which is
essentially derived from Bhansali (1980). We first note that, by Stirling’s approximation,

(mN)

(mN+p) � m−p

N as mN → ∞, and thus Y(p)j � (
2π Īj
mN
)p is interpreted as the pth power of

the Daniell spectral estimator of 2π f (ω̄j).
This leads to reformulating the GACV estimator as follows:

γ̂pk,mN = 1
MN

MN−1∑
j=0

Y(p)j,BN cos(ω̃jk), (6)

where

Y(p)j,BN =
(

1
BN

∫ πBN

−πBN
I(ω̃j + λ) dλ

)p

, (7)

and I(ω) is the extended periodogram, which equals I(ωj) forω ∈ (ωj − π/N,ωj + π/N],
while ω̃j = 2π j/MN , j = 1, . . . ,MN − 1 and BN = mN

N−1 is the bandwidth.

Remark 1.3: The new notation for the pth power of the Daniell estimator of the spectral
density in Equation (7) is convenient in light of the new design of the estimator of the
spectral density at the frequency ω̃j. We remark that the interval (0, 2π] is divided into
MN − 1 subintervals, centred at ω̃j = 2π j

MN
, j = 1, . . . ,MN − 1. Around these frequencies,

we considermN periodogram ordinates falling in a band of frequencies ω̃j ± πBN , where
BN = mN/(N − 1). As a consequence, the periodogram ordinates used for estimating the
spectrum by the Daniell estimator at ω̃j have a partial overlapping with those used for the
neighbouring frequencies.

The large sample properties of the GACV estimator in Equation (6) are derived for the
linear process {Xt}t∈T introduced so far, under an additional regularity condition on the
process and an assumption on the design of the GACV estimator.

Assumption 1.5: The autocovariance of {Xt}t∈T satisfies
∑∞

k=−∞ |k|3|γk| < ∞.

Assumption 1.6: In the GACV estimator (6) let N → ∞, MN → ∞ and BN → 0 accord-
ing to MN = O(Nβ), 0 < β < 1 and BN = O(N−α), or equivalently mN = O(N1−α).
Moreover, the rates α and β satisfy 1

4 < α < 1 − δ0, with δ0 > 0 arbitrarily small, and
1−α
5 < β < 1−α

3 .
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Theorem 1.1: Under Assumptions 1.5 and 1.6, γ̂pk,mN →p γpk, and

N
1
2 (1−α+β)(γ̂pk,mN − γpk) →d N

(
0,
p2

π

∫ π

−π
[2π fθ (ω)]2p cos2(ωk) dω

)
. (8)

Proof: See Appendix B. �

Remark 1.4: Choosing α = 1
4 + ε, for ε > 0 arbitrarily small, and β = 1

4 − ε′, ε′ > ε/3,
the rate of convergence of the asymptotic variance can be made arbitrarily close to 1. In
practice, this implies that we can continue to use the pooled estimator withmN growing at
a rate slightly below N0.75 and settingMN equal to

MN =
⌊
1
2
B−1
N

⌋
=
⌊
N − 1
2mN

⌋
,

which yields the usual GACV design. This choice would also amount to settingMN equal
to the equivalent number of independent spectral estimates, see Jenkins (1961, p. 155) and
the discussion in Bhansali (1980, pp. 562–563).

In this adaptive bandwidth setting, Equation (8), gives

p2

π
(2π)2p

∫ π

−π
[fθ (ω)]2p cos2 (ωk) dω

≥
{
(2π)(p−1)p

∫ π

−π
[fθ (ω)]p

∂ ln fθ (ω)
∂θ ′ cos(kω) dω

}

×
{

1
4π

∫ π

−π
∂ ln fθ (ω)
∂θ

∂ ln fθ (ω)
∂θ ′ dω

}−1

×
{
(2π)(p−1)p

∫ π

−π
[fθ (ω)]p

∂ ln fθ (ω)
∂θ ′ cos(kω) dω

}′
. (9)

2. Asymptotic efficiency of nonparametric estimators of the GACV

The nonparametric estimator γ̂pk,mN of the generalised autocovariance function γpk is
asymptotically efficient if its asymptotic variance attains the Cramér–Rao bound, that is
if equality holds in the inequality (9). The following theorem provides a necessary and
sufficient condition for asymptotic efficiency of γ̂pk,mN for the linear process {Xt}∈T .

Theorem 2.1: Suppose that Assumptions 1.2, 1.3, 1.6 are satisfied. Then, γ̂pk,mN defined
in (6) is asymptotically efficient if and only if there exists an s-dimensional vector c, not
depending on ω, such that it holds for all ω:

[fθ (ω)]p+1 cos (kω)+ c′
∂fθ (ω)
∂θ

= 0. (10)

Proof: See Appendix C. �
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The above condition can also be stated as

[fθ (ω)]p cos (kω)+ c′
∂ ln fθ (ω)
∂θ

= 0.

The proof of Theorem 2.1 is based on a matrix integral inequality from Kakizawa and
Taniguchi (1994), generalising the Cauchy–Schwarz inequality and Holevo’s inequality
(Kholevo 1969).

Theorem 2.1 provides a necessary and sufficient condition for asymptotic efficiency of
γ̂pk,mN which is valid for general linear processes. It is expressed in terms of the spectral
density function and is easy to check for various models. This result embodies in a single
equation the condition for asymptotic efficiency of the sample autocovariance function
(p = 1), of the estimator γ̂−1,k of the inverse autocovariance function (p = −1), which
at lag k = 0 provides the inverse of the interpolation error variance, and of the estimator
γ̂pk,mN for general real powers p.

Remark 2.1: In the Gaussian case, under Assumptions 1.2, 1.3, and 1.4, the estimator
γ̂pk in Equation (2) is asymptotically efficient if condition (10) holds and either p = 1 or,
with a degree of approximation summarised in Table 1, if m is sufficiently large so that
m(C(m; p, p)− 1)/p2 is approximately equal to 1.

Remark 2.2: The estimators (2) and (6) can be viewed in the wider context of estima-
tion of functionals of the spectral density, which are related to many important quantities
in stationary time series. Setting m = 1, for p>0, Yp

j is the inverse Laplace transform
of [2π f (ωj)]−(p+1) evaluated at 2πI(ωj), proposed by Taniguchi (1980) for estimating
[2π f (ωj)]p. Asymptotic efficiency of this estimator is studied in Taniguchi (1981), who
establishes that this estimator is asymptotically efficient if p = 1 and the spectral density is
constant over [−π ,π]. The nonparametric estimators of γpk further generalise these results
to any real power transform, including negative p. As pointed out by Taniguchi (1980,
p. 74), replacing the periodogram by a consistent spectral density estimator results in a
loss of efficiency. However, as shown above, if the number of frequencies used in the esti-
mation of the functional increases at a sufficiently slow rate, then the asymptotic variance
is O(N−1+α−β), which can be made arbitrarily close to O(N−1). Hence, the introduction
of the pooling parametermN allows us to obtain asymptotically efficient estimates also for
p �= 1.

Remark 2.3: By setting the power p and the pooling parameter m to 1, inequality (5)
reduces to the asymptotic Cramér–Rao inequality for the sample estimator of the auto-
covariance function analysed by Kakizawa and Taniguchi (1994). Note also that for p = 1,
Cm,p = 1. Hence, if we consider estimation of the traditional autocovariance function, the
asymptotic variance of the nonparametric estimator γ̂1k does not depend on the pool-
ing parameter m. Indeed, γ̂1k is the Riemannian sum approximation over the Fourier
frequencies of the sample autocovariance at lag k, denoted by γ̃k,

lim
N→∞

1
�(N − 1)/2	

�(N−1)/2	∑
j=1

2πI(ωj) cos (ωjk) =
∫ π

−π
I(ω) cos(ωk) dω = γ̃k,
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with I(ω) = 1
2π
∑

|h|<N γ̃h cos (ωh). Hence limN→∞ γ̂1k = γ̃k, and their asymptotic vari-
ances, as N → ∞, are equivalent. As a matter of fact, by setting p = 1, Theorem 2.1
provides the condition for asymptotic efficiency of the sample autocovariances byKakizawa
and Taniguchi (1994).

Remark 2.4: The results derived in the paper hold for fixed values of the power parameter
p. The latter is either selected over a grid of possible values, by means of some criterion
function, such as the deviance measure based on the Whittle likelihood advocated by Xia
and Tong (2011), or is a priori fixed according to the scope of the analysis. For instance, a p-
squared distance between two processes can be specified based on their power transformed
spectral densities that gives the Hellinger distance (p = 1/2) or the quadratic distance
defined by Hong (1996) (p = 1), see Proietti and Luati (2015). An alternative strategy,
not implemented yet, would involve estimation of p based on some smoothness criterion
without the need for a parametric model.

We conclude the Sectionwith aCorollary to themain theorem that shows how the firstK
inverse autocovariances of amoving average process of orderK can be efficiently estimated
with a nonparametric method, despite the inefficiency of the sample autocovariances for
pure moving average processes.

Corollary 2.1: Consider the process with spectral density function fθ (ω) = 1
2π [

1
θ(ω)

]
1
p ,with

θ(ω) = θ0 + 2
∑K

j=1 θj cos (ωj), so that ∂θ(ω)
∂θ

= q(ω) = [1, 2 cos (ω), 2 cos (2ω), . . . , 2
cos (ωK)]′. Then,

∂fθ (ω)
∂θ

= −(2π)p 1
p
[fθ (ω)]p+1q(ω).

Condition (10) in Theorem 2.1 becomes

[fθ (ω)]p+1
{
cos (kω)− (2π)p

p
c′q(ω)

}
= 0,

which is satisfied if c = [0, 0, . . . , p
2(2π)p , 0, . . . , 0]

′. This implies that for p = −1 the
process is moving-average of order K and the first K inverse autocovariances γ −1,K =
[γ−1,1, . . . , γ−1,K]′ and γ−1,0 can be efficiently estimated as N → ∞ by the estimator of the
GACV γ̂ −1,K,mN .

3. Numerical illustrations

Some specific cases of ARMA processes and values of the power parameter are considered
to illustrate how the asymptotic variance of the nonparametric estimator discussed in the
paper is related to its Cramér–Rao lower bound.

Let {Xt}t∈T be a zero mean stationary ARMA(r, q) process, φr(L)Xt = θq(L)εt ,
where φr(L) = 1 − φ1L − . . .− φrLr, θq(L) = 1 − θ1L − . . .− θqLq, εt ∼ i.i.d.(0, σ 2)
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Table 2. Relative asymptotic efficiency AV/CRB of
γ̂pk,mN for anAR(1)modelwithφ = 0.8 andσ 2 = 1 for
positive p and increasing values of the lag parameter
k.

AV/CRB k = 1 k = 2 k = 4 k = 5 k = 7

p = 2 1.08 1.10 1.19 1.26 1.51
p = 3

2 1.03 1.05 1.15 1.25 1.59
p = 1 1.00 1.00 1.16 1.31 1.88

Table 3. Relative asymptotic efficiency AV/CRB of
γ̂pk,mN for an MA(1) model with θ = −0.7, σ 2 = 1.

AV/CRB k = 1 k = 2 k = 3 k = 4 k = 5

p = −1 1.00 1.06 1.24 1.60 2.24

with spectral density function

fθ (ω) = σ 2

2π
|θq(e−ıω)|2
|φr(e−ıω)|2 .

We denote the asymptotic variance of γ̂pk,mN at θ = (φ1, . . . ,φr, θ1, . . . , θq, σ 2)′ by

AV{γ̂pk,mN } = (σ 2)2p

π
p2
∫ π

−π

(
|θq(e−ıω)|2
|φr(e−ıω)|2

)2p

cos2 (kω) dω

and observe that, in the (most conservative) Gaussian case, the asymptotic variance of the
fixed-bandwidth estimator γ̂pk is equal to CmpAV{γ̂pk,mN }, where the impact of Cmp for
some combinations of m and p is quantified in Table 1. The latter showed that, except in
the case of negative integers, requiring at least m = 30 for Cm,p being close to unity, in all
the other cases,m ≥ 5 ensures that Cm,p is approximately 1.

We first consider the case of a stationary AR(1) process, with φ = 0.8 and σ 2 = 1.
Table 2 focuses on positive values of p. The numerical illustration aims at assessing how
asymptotic efficiency deteriorates as long as the power p increases and the lag k increases.
The results show that the relative efficiency of the estimator is not strongly affected by
increasing p. The same is observed when the first lags are estimated. Conversely, for p = 2
and k = 7, the asymptotic variance is 1.5 times larger than its lower bound.

The same is observed in the case of a MA(1) process with p = −1. We recall that
Corollary 2.1 establishes that in an MA(K) processes the first K inverse autocovariances
are efficiently estimated by the nonparametric estimator γ̂−1k,mN . Table 3 shows that ineffi-
ciency arises after lag k = 4, while for the first four lags, typicallymost relevant in empirical
analysis based on MA processes, values of the ratio AV/CRB slightly greater than one are
observed.

Table 4 shows that the estimation of the inverse autocovariances remains efficient for
k = 1 and close to efficiency for k = 2 even for an ARMA(1,2) process, which improves
the results by Porat (1987) andWalker (1995) related to sample autocovariances (p = 1) of
Gaussian ARMA(r, q) processes, none of which was shown to be asymptotically efficient
in the case when q > r.
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Table 4. Relative asymptotic efficiency AV/CRB of
γ̂pk,mN for an ARMA(1,2) model with θ1 = 0.7, θ2 =
−0.1,φ = 0.6, σ 2 = 1.

AV/CRB k = 1 k = 2 k = 3 k = 4 k = 5

p = −1 1.00 1.14 2.44 2.72 3.10

4. Minimum contrast estimation

As in Corollary 2.1, let us consider the process with spectral density function

[2π fθ (ω)]p = [θ(ω)]−1, (11)

where θ(ω) > 0 is the trigonometric polynomial θ0 + 2
∑K

k=1 θk cos(ωk). Writing θ(ω) =
θ0|φ(e−ıω)|2, φ(e−ıω) = 1 −∑K

j=1 φj e
−ıωj, such that θk = θ0

∑K−k
j=1 φjφj+k, and setting

σ 2 = θ−1
0 , it can be seen, by integrating both sides of (11) over ω ∈ [−π ,π], that

γpk is the autocovariance function of the AR(K) process Ut = ∑K
j=1 φjUt−j + σεt , εt ∼

i.i.d. N(0, 1).
Following Taniguchi (1987), let us consider minimum contrast (MC) estimation of the

spectral density fθ (ω) using the contrast functional

K(z; p) = ln(zp)+ 1
zp
,

applied to fθ (ω)/gN(ω), where, defining

Y(ω) = 1
2π

M−1∑
−M+1

γ̂pk e−ıωk, ω ∈ [−π ,π],

so that γ̂pk = ∫ π
−π Y(ω) e

ıωk dω, we have set gN(ω) = [Y(ω)]1/p.
The MC estimator of (φ1, . . . ,φK , σ 2)′ is the minimiser of∫ π

−π
K
(
fθ (ω)
gN(ω)

, p
)

dω

=
∫ π

−π

{
ln σ 2 − ln |φ(e−ıω)|2 − lnY(ω)+ 1

σ 2Y(ω)|φ(e−ıω)|2
}
dω.

TheMCestimator ofσ 2 is σ̂ 2 = 1
2π
∫ π
−π Y(ω)|φ̂(e−ıω)|2 dω. Plugging this into the contrast

function (and noting
∫ π
−π |φ̂(e−ıω)|2 dω = 0), theMC estimator of φ = (φ1, . . . ,φs)′ is the

minimiser of the criterion function

Q(φ) =
∫ π

−π
Y(ω)|φ(e−ıω)|2dω.

Writing

|φ(e−ıω)|2 = 1 − 2φ′b(ω)+ φ′B(ω)φ
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where b(ω) = [cosω, cos(2ω), . . . , cos(ωK)]′ and B(ω) = {cos(ω(h − k)), h, k = 1,
2, . . . , s}, differentiating with respect to φ and setting the derivatives equal to zero yields

∂Q
∂φ

=
∫ π

−π
Y(ω)(b(ω)− B(ω)φ) dω ≡ 0,

which is the generalised Yule–Walker system of equations:

γ̂pk =
K∑
j=1

φ̂jγ̂p,k−j, k = 1, 2, . . . ,K.

Hence, an asymptotically efficient estimator of (φ, σ 2), and thus of θ , can be obtained by
solving a generalised Yule–Walker system based on the GACV estimator (2).
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Appendices

Appendix 1. Asymptotic behaviour of the factor Cm,p

The term Cm,p = m(C(m; p, p)− 1)/p2 converges to 1 asm → ∞. We start by using a result about
the approximation of a quotient of twoGamma functions, obtained by the use of the Stirling’s series,
see Erdélyi, Magnus, Oberhettinger, and Tricomi (1954):


(z + α)


(z + β)
= zα−β

[
1 + (α − β)(α + β − 1)

2z
+ O(|z|−2)

]
,

as z → ∞, where α and β are bounded. By using this approximation, we can rewrite


(m)
(m + 2p)
[
(m + p)][
(m + p)]

≈ m−p
[
1 + (−p)(p − 1)

2m

]
mp
[
1 + p(3p − 1)

2m

]

= 4m2 + 4mp2 − 3p4 + 4p3 − p2

4m2 ,

By a change of variable and the De L’Hôpital theorem, it is straightforward to show that
m(C(m; p, p)− 1) → p2 asm → ∞.

Appendix 2. Proof of Theorem 1.1

Let us denote f̂ (ω̃j) = 1
2πBN

∫ πBn
−πBN I(ω̃j + λ) dλ, the Daniell estimator of f (ω̃j). Then, writing

Y(p)j,BN = (2π f̂ (ω̃j))
p, and letting N → ∞,MN → ∞ and BN → 0, NBN → ∞, as in the statement

of Theorem 4.3 of Bhansali (1980), so that νj = limN→∞ ω̃j, we have that Y
(p)
j,BN is an estimator of

[2π f (νj)]p. Since the Daniell kernel satisfies Assumption 1 of Bhansali (1980), with characteristic
exponent equal to 2, underAssumption 1.6 for the linear process {Xt}t∈T , it holds that f̂ (ν) converges
in probability to f (ν) uniformly in ν (Bhansali 1980, Lemma 4.1).
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By a Taylor series expansions of [2π f̂ (ω̃j)]p about [2π f (ω̃j)]p,

γ̂pk,mN − γpk = 1
MN

MN−1∑
j=0

[2π f (ω̃j)]p cos(ω̃jk)− γpk

+ 2πp
MN

MN−1∑
j=0

[2π f (ω̃j)]p−1
{
f̂ (ω̃j)− f (ω̃j)

}
cos(ω̃jk)+ OP(N−1B−1

N )

≤ C|γp−1,k|max
ω

|f̂ (ω)− f (ω)|,

where C is a positive constant. This follows from the convergence of the Riemann sum 1
MN∑MN−1

j=0 [2π f (ω̃j)]p cos(ω̃jk) to γpk, while 1
MN

∑MN−1
j=0 [2π f (ω̃j)]p−1 cos(ω̃jk) → γp−1,k as MN →

∞. By uniform consistency, P(maxω | f̂ (ω)− f (ω)] < ε) → 1, for all ε > 0 as N → ∞, it follows
that γ̂pk,mN →P γpk.

In light of the Taylor series expansion, the asymptotic normality of γ̂pk,mN is related to that
of f̂ (ω̃j). The Daniell estimator, f̂ (ω), is evaluated at the frequencies ω̃j = 2π j

MN
, j = 1, . . . ,MN − 1,

where j → ∞ as N → ∞. Assume that ω̃j converges to νj as both j and MN grow. Then, under
Assumptions 1.5–1.6, by Theorem 9, page 280, and Theorem 11, p. 289, in Hannan (1970), see also
Priestley (1981), Section 6.2.4,

√
NBN

{
f̂ (νj)− f (νj)

}
→d N

(
0, f 2(νj)

)
,

if νj �= (0,π), whereas the asymptotic variance is doubled if νj = 0, or νj = π . In particular,

E{f̂ (νj)− f (νj)} = −π
2

6
B2Nf

′′
(νj)+ o(1),

where f
′′
(ω) = d2f (ω)/(dω)2. Second,

NVar(f̂ (ω̃j) = κ4

[∫ π

−π
f 2(λ)WN(ω̃j − λ) dλ

]2

+ 2π
∫ π

−π
f 2(λ)WN(ω̃j − λ){WN(ω̃j − λ)+ WN(ω̃j + λ)} dλ+ o(1),

where the first addend is O(1), while the second is O(B−1
N ), and, when multiplied by BN , converges

to f 2(νj).
Finally, f̂ (νj) and f̂ (νk) are asymptotically independent. The distance between ω̃j and ω̃k is (at

least) 2πM−1
N . To ensure that the corresponding spectral estimates are asymptotically uncorrelated

we need thatMN diverges more slowly than B−1
N , asN → ∞. This is indeed the case, as we assumed

that B−1
N = O(Nα) and MN = O(Nβ), with 0 < β ≤ α. Thus, if we suppose that as N → ∞ the

frequencies ω̃j and ω̃k converge respectively to νj and νk, as (j, k,MN ,B−1
N ) → ∞ with N → ∞,

then by Theorem 4.3 in Bhansali (1980),

Cov(f̂ (ω̃j), f̂ (ω̃k) = O(N−1B−1
N ).

Hence,
√
NBNMN γ̂pk,mN − γpk is asymptotically normal with mean zero and variance

lim
N→∞

{
NBNMNVar

(
γ̂pk,mN − γpk

)} = p2

π

∫ π

−π
[2π fθ (ω)]2p cos2(ωk) dω.

The conditions (i)–(vi) of Theorem 4.4 in Bhansali (1980) then become: (i) α + 3β < 1 − δ0, for
δ0 > 0 arbitrarily small; (ii) 5α > 1 + β ; (iii) α + 5β > 1; (iv) α > β ; (v) α > βδ0/(1 − δ0); (vi) is
implied by (i). By choosing α and β according to Assumption 1.6, all these conditions are satisfied.
Hence, result (8) follows. �
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Appendix 3. Proof of Theorem 2.1

We first recall the following Lemma by Kakizawa and Taniguchi (1994).

Lemma A.1: Let A(ω) and B(ω) be r × s, t × s matrices, respectively, and let g(ω) be a function such
that g(ω) > 0 almost everywhere on [−π ,π]. If the matrix{∫ π

−π
B(ω)B(ω)′

g(ω)
dω
}−1

exists, then∫ π

−π
A(ω)A(ω)′g(ω) dω ≥

{∫ π

−π
A(ω)B(ω)′ dω

}{∫ π

−π
B(ω)B(ω)′

g(ω)
dω
}−1 {∫ π

−π
A(ω)B(ω)′ dω

}′

where ≥ means the left-hand side minus the right-hand side results in a positive semi-definite matrix.
Equality holds if there exists an r × t matrix C which is independent of ω such that:

g(ω)A(ω)+ CB(ω) = 0.

We are now in the position of proving Theorem 2.1.
The Cramér–Rao inequality (9) can be written as in Equation (9). Setting

A(ω) = cos (kω)[fθ (ω)]p−1, B(ω) = ∂fθ (ω)
∂θ

, g(ω) = f 2θ (ω)

and applying Lemma A.1, then existence of a vector c as in Equation (10) ensures that the
Cramér–Rao lower bound is attained. �
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