Let S be the first degeneracy locus of a morphism of vector bundles corresponding to a general matrix of linear forms in P-s. We prove that, under certain positivity conditions, its Hilbert square Hilb(2)(S) is isomorphic to the zero locus of a global section of an irreducible homogeneous vector bundle on a product of Grassmannians. Our construction involves a naturally associated Fano variety, and an explicit description of the isomorphism.
Hilbert squares of degeneracy loci
Fatighenti, E
;Meazzini, F;Mongardi, G;Ricolfi, AT
2022
Abstract
Let S be the first degeneracy locus of a morphism of vector bundles corresponding to a general matrix of linear forms in P-s. We prove that, under certain positivity conditions, its Hilbert square Hilb(2)(S) is isomorphic to the zero locus of a global section of an irreducible homogeneous vector bundle on a product of Grassmannians. Our construction involves a naturally associated Fano variety, and an explicit description of the isomorphism.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2204.00437.pdf
embargo fino al 02/11/2023
Tipo:
Postprint
Licenza:
Licenza per accesso libero gratuito
Dimensione
392.42 kB
Formato
Adobe PDF
|
392.42 kB | Adobe PDF | Visualizza/Apri Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.