Let S be the first degeneracy locus of a morphism of vector bundles corresponding to a general matrix of linear forms in P-s. We prove that, under certain positivity conditions, its Hilbert square Hilb(2)(S) is isomorphic to the zero locus of a global section of an irreducible homogeneous vector bundle on a product of Grassmannians. Our construction involves a naturally associated Fano variety, and an explicit description of the isomorphism.

Fatighenti, E., Meazzini, F., Mongardi, G., Ricolfi, A.T. (2023). Hilbert squares of degeneracy loci. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 72(6), 3153-3183 [10.1007/s12215-022-00832-w].

Hilbert squares of degeneracy loci

Fatighenti, E
;
Meazzini, F;Mongardi, G;Ricolfi, AT
2023

Abstract

Let S be the first degeneracy locus of a morphism of vector bundles corresponding to a general matrix of linear forms in P-s. We prove that, under certain positivity conditions, its Hilbert square Hilb(2)(S) is isomorphic to the zero locus of a global section of an irreducible homogeneous vector bundle on a product of Grassmannians. Our construction involves a naturally associated Fano variety, and an explicit description of the isomorphism.
2023
Fatighenti, E., Meazzini, F., Mongardi, G., Ricolfi, A.T. (2023). Hilbert squares of degeneracy loci. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 72(6), 3153-3183 [10.1007/s12215-022-00832-w].
Fatighenti, E; Meazzini, F; Mongardi, G; Ricolfi, AT
File in questo prodotto:
File Dimensione Formato  
2204.00437.pdf

Open Access dal 03/11/2023

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 392.42 kB
Formato Adobe PDF
392.42 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/916891
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact