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HILBERT SQUARES OF DEGENERACY LOCI

ENRICO FATIGHENTI, FRANCESCO MEAZZINI, GIOVANNI MONGARDI, AND ANDREA T. RICOLFI

ABSTRACT. Let S be the first degeneracy locus of a morphism of vector bundles corresponding to a general matrix
of linear forms in Ps . We prove that, under certain positivity conditions, its Hilbert square Hilb2(S ) is isomorphic
to the zero locus of a global section of an irreducible homogeneous vector bundle on a product of Grassmannians.
Our construction involves a naturally associated Fano variety, and an explicit description of the isomorphism.

0. INTRODUCTION

The Hilbert scheme of 2 points Hilb2(S ) on a smooth variety S , called the Hilbert square of S , is an interest-
ing smooth variety, whose geometry is incredibly rich, and yet not fully understood. An intriguing problem
consists in finding a projective embedding of Hilb2(S ), for example by either writing down equations or re-
alising it as the zero locus of a section of some vector bundle. An archetypical example is when Sg is a K3
surface of genus g , in which case Hilb2(Sg ) is a hyperkähler fourfold, and a projective embedding is known
in a bunch of cases, including g = 3, 5, 7, 8, 12 — the last one only up to deformations, see [1, 3, 10, 11, 16]. A
few other cases are known, including the recent case of P2, see [15].

In this paper, we focus on the special case where S ⊂ Ps arises as the first degeneracy locus of a general
morphism of vector bundles

ϕ : O⊕n+m
Ps →OPs (1)⊕n .

The case s = 3, n = 3, m = 0 coincides with the quartic determinantal K3 surface studied by Iliev and Manivel
in [16]. Letting s , n , m vary, we find many examples of interesting varieties, including surfaces of general
type.

Our idea is to study Hilb2(S ) via an auxilary hypersurface Y ⊂ Ps ×Pn+m−1×Pn−1 naturally associated to S ,
and defined explicitly in Equation (1.2). The variety Y is always a Fano variety, whose study was one of the
initial motivations for our project. Via a modular-type construction we then pass from Y to Z , defined as

Z = V (ω) ,→Gr(2, n )×Gr(2, s +1)×Gr(n +m −2, n +m ),

whereω is a tri-tensor naturally attached toϕ. As explained in Section 1.1, Z is the zero locus of a section of
an irreducible, globally generated, homogeneous vector bundle naturally associated to Y .

Our main result proves that, in a certain infinite range, the variety Z and the Hilbert square Hilb2(S ) of the
variety we started with are isomorphic. Namely, we have the following.

Theorem A (Theorem 5.2). Let n ≥ 3, m ≥ 0, s ∈ {m +2 , . . . , 2m +3}. Assume n > 2s −2m −3. Then, there is
an isomorphism of schemes ϑ : Z e→Hilb2(S ).

Our proof goes via the explicit construction of the morphism ϑ. In principle, it says nothing on the cases
n ≤ 2s − 2m − 3. However, we show that for low values of m these two varieties are not even deformation
equivalent — indeed, their topological Euler characteristics are different. This observation leads us to con-
jecture that, in fact, our bound is optimal, see Conjecture 6.6.

In Sections 1–2 we explain the geometric setup and the main motivating ideas behind this paper; we also
explicitly describe various examples in which our result applies. Sections 3–4 are the technical core of this
paper: first we describe in full detail the geometry of Z (cf. Theorem 3.7) independently upon the choice of
s , n , m , then we explain how the cases in which our main result does not work are related to the presence of
some special lines contained in S (cf. Theorem 4.2 and Theorem 4.3). Our main result, Theorem A, is proved
in Section 5 (cf. Theorem 5.2), whereas Section 6 is devoted to the study of the geometry of some interest-
ing varieties arising as the limit cases for which our method fails, but enjoying a beautiful and rich geometry.
Among these examples we include generalised Bordiga scrolls (cf. Example 6.3), higher dimensional White va-

rieties (cf. Example 6.4), and also certain varieties containing a finite number of special lines (cf. Example 6.5
and Conjecture 6.6).

http://arxiv.org/abs/2204.00437v1
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Notation. We work over the field of complex numbers C. For an arbitrary positive integer d we let Vd be a
d -dimensional C-vector space, which we also identify with d -dimensional affine space Ad .

We denote by Gr(k , n ) the Grassmannian of k -dimensional subspaces in Vn . We denote with U the rank
k tautological vector bundle over it, with anti-ample determinant. We write X = (G ,F ) to denote the zero
locus X = V (σ) ⊂G , for a general section σ ∈H0(G ,F ) of a vector bundle F on a variety G . Sometimes we
will need to work with a specific σ, and we will specify it accordingly.

Acknowledgements. We are grateful to Kieran O’Grady and Claudio Onorati for useful discussions on the
subject of this paper. The first three authors are members of INDAM-GNSAGA. The authors have been par-
tially supported by PRIN2017 2017YRA3LK and PRIN2020 2020KKWT53.

1. SETUP, MOTIVATION AND SOME TOY CASES

1.1. Degeneracy loci, Fano varieties and Hilbert schemes. We start by considering a very simple construc-
tion from linear algebra. We consider a general n × (n +m )matrix of homogeneous linear forms

M =





f 1
1 . . . f 1

n+m

f 2
1 . . . f 2

n+m
...

...
...

f n
1 . . . f n

n+m





on an ambient projective space Ps = P(Vs+1). If we ask for M to have non-maximal rank, we have to consider
the locus where all the n + 1 maximal minors vanish. This is of course equivalent to the existence of some
linear relations between the rows of M . We can therefore consider two strictly related loci: the first one is
Sn ,s ,m ⊂ P

s , given by the vanishing of the maximal minors of M — i.e. the first degeneracy locus Dn−1(ϕ)—
where we implicitly identify the matrix with the morphismϕ : O⊕n+m

Ps →OPs (1)⊕n defining it. Sometimes we
will shorten Sn ,s ,m with S , when the subscripts are clear from the context. In other words,

Sn ,s ,m =
�
[v ] ∈ Ps
�� rank(Mv )≤ n −1

	
,

where Mv ∈Matn ,n+m(C) is the evaluation of M at v ∈Vs+1.

The second relevant locus is a subvariety Xn ,s ,m ⊂ P
s ×Pn+m−1, given by n bihomogeneous linear polyno-

mials of bi-degree (1, 1), i.e. by a section of O(1, 1)⊕n .
What is the relation between S and X ? First of all, assume S to be smooth with dim(S ) > 0. Under our

generality assumption, this will be equivalent to requiring m + 2≤ s ≤ 2m + 3, where the second inequality
ensures that the further degeneracy loci will be empty.

Now, Xn ,s ,m is constructed in a tautological way as follows: if y1, . . . , yn+m are chosen coordinates on
Pn+m−1, and Fi = ( f

i
1 , . . . , f i

n+m ) is the i -th row of our matrix M , we will have

Xn ,s ,m = V (F1 · y , . . . , Fn · y )⊂ P
s ×Pn+m−1.

Using our notation,

(1.1) Xn ,s ,m =
�
P

s ×Pn+m−1,O(1, 1)⊕n
�

.

The fibres of the projection π: Xn ,s ,m ,→ P
s ×Pn+m−1→ Ps are generically cut out by n linear equations, or

n − 1 exactly where there is a linear dependence relation in M (and that is all that can happen, since by
hypothesis there are no further degenerations): in other words, we have proved the following lemma.

Lemma 1.1. In the setup above,π: Xn ,s ,m→ P
s is generically a Pm−1-bundle jumping to a Pm -bundle exactly

over Sn ,s ,m .

We call X = Xn ,s ,m a generalised (m −1, m ) blow-up of S = Sn ,s ,m . This construction is sometimes referred
to as Cayley trick. This is in fact a generalisation of the blow-up formula, and it implies that the vanishing
cohomologies of X and S are isomorphic, and also that D b (X ), the bounded derived category of coherent
sheaves over X , contains a copy of D b (S ). References for this fact can be found in [18, Theorem 2.4] and [4,
Proposition 46].

We could have built yet another natural variety starting from the matrix M (or better, its transpose). If we
take the transpose M t of the matrix M , and we apply it to a vector z = (z1, . . . , zn )

t we can consider the locus
Γn ,s ,m ⊂ P

s ×Pn−1, given by M t · z = 0. In other words, if we write F t
i = ( f

1
i , . . . , f n

i ), we have then

Γn ,s ,m = V (F t
1 · z , . . . , F t

n+m · z )⊂ P
s ×Pn−1
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and again, in our notation,
Γn ,s ,m = (P

s ×Pn−1,O(1, 1)⊕n+m ).

Consider, this time, the restricted projection Γn ,s ,m ,→ P
s×Pn−1→ Ps . This time the fibre is generically empty,

and it becomes a point exactly where the rank drops, i.e. on S . In other words, one has the following lemma.

Lemma 1.2. The projection Ps ×Pn−1→ Ps restricts to an isomorphism Γn ,s ,m e→Sn ,s ,m .

This implies that the Picard group of Sn ,s ,m is Z2 (at least generically), and the line bundles O(1, 1) and
O(1, 0) (restricted from Ps ×Pn−1) are both very ample. In what follows, we will study as well the morphism
induced by O(0, 1), showing that it will be very ample in a certain range (namely n > 2s −2m −3) as well.

Consider now two triples (n1, s1, m1) and (n2, s2, m2): if we set n2 = s1 +1, s2 = n1 −1, m2 = n1+m1 − s1 −1,
then Γn1,s1,m1

and Γn2,s2,m2
are both (n1 +m1)-codimensional linear sections of Ps1 × Pn1−1, with the role of

the two projective spaces exchanged, hence they belong to the same deformation family. When the triples
satisfy such a relation, we call them associated.

If we are in the correct range for the first triple, i.e. m1+2≤ s1 ≤ 2m1+3, n1 ≥ 3 and n1 > 2s1−2m1−3, then
the second triple will be in the correct range as well (in fact n2 > 2s2−2m2−3 reduces exactly to s1 ≤ 2m1+3).

In this range both projections to Ps1 and Pn1−1 are embeddings when restricted to Γ (this follows from
Theorem 4.2): in other words,

Sn2,s2,m2
∼= Ss1+1,n1−1,n1+m1−s1−1

yields another presentation for Sn1,s1,m1
, with a different embedding. We will see these phenomena in detail

when dealing with two presentations of determinantal quartic K3 surfaces (abstractly but not projectively
isomorphic), and of a quintic determinantal surface embedded as codimension 2 degeneracy locus, see Sec-
tion 1.3.

Let us now get back to X = Xn ,s ,m , and perform once again a Cayley trick. In fact, we can associate to
Xn ,s ,m another variety

(1.2) Yn ,s ,m = (P
s ×Pn+m−1×Pn−1,O(1, 1, 1)),

defined tautologically starting from the equations of X . This will be simply given by

Yn ,s ,m = V

�
n∑

i=1

zi (Fi · y )

�
.

Of course, the projection Pn−1×Ps ×Pn+m−1→ Ps ×Pn+m−1 restricted to Y is generically a Pn−2-bundle, with
special fibres the whole Pn−1 over X .

Notice that Y = Yn ,s ,m is a Fano variety, simply by adjunction: on the other hand this is not the case in
general for X or S : as a matter of fact, we will work only under certain (at least) non-negativity assumption
for the canonical bundle of S .

In a certain sense, the main character of the whole story is precisely the Fano variety Y : we can see it as
the universal variety associated to a tri-tensorω ∈ V ∨s ⊗V ∨n+m ⊗V ∨n simply given byω=

∑
1≤i≤n zi (Fi · y ). To

be precise, we should have a dual in the last component — equivalently, it would be more natural to have
the dual (Pn−1)∨- but we silently use the duality isomorphism to unburden the notation.

The geometry of a tri-tensor is an old and fascinating topic, with one of the first references being [6]. See
also, [26, 30] for a modern account. The degeneracy locus S , the rational variety X and all the other characters
appearing in this picture can be seen to be induced by Y via the obvious projections.

Finally, we associate to Yn ,s ,m one last variety Zn ,s ,m , which is far from being a Fano variety. Denote by

(1.3) Gn ,s ,m
..=Gr(2, n )×Gr(2, s +1)×Gr(n +m −2, n +m ),

then define the vanishing locus Zn ,s ,m = V (ω)⊂Gn ,s ,m . In our notation,

(1.4) Zn ,s ,m = (Gn ,s ,m , U∨⊠U∨⊠U∨).

The reason for this apparently arbitrary choice is that by Borel–Bott–Weil

H0(Pn−1×Ps ×Pn+m−1,O(1, 1, 1))∼=H0
�
Gn ,s ,m , U∨⊠U∨⊠U∨

�
.

Notice that this holds true for any product Gr(k3, n )×Gr(k1, s+1)×Gr(k2, n+m ). However, with this particular
choice of ambient spaces, we have that the dimension of Z is equal to 2(s −m −1), i.e. dimZ = 2 ·dimS .

This is not a coincidence: in fact the purpose of this paper is to show that as long as the triple (n , s , m )

satisfies the constraints
m +2≤ s ≤ 2m +3, n > 2s −2m −3,
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one has an isomorphism of schemes

Zn ,s ,m
∼=Hilb2(Sn ,s ,m).

We stress that the condition n > 2s − 2m − 3 is not an if and only if. In fact our proof goes via the explicit
construction of a morphism to the Hilbert scheme, which exists and happens to be an isomorphism in that
range. This a priori says nothing on the other cases. However, we show that for, e.g. m = 0, 1 our bound is
optimal, see Example 6.2 and Example 6.5 where we explicitly compute the Hodge numbers of Z and Hilb2(S )

in the range n ≤ 2s −2m −3, thus confirming that they are different.

1.2. A conjectural relation with the Hilbert scheme of the Fano variety Y . Before discussing some exam-
ples, we mention one more relation between Z and the Hilbert scheme, that we leave for future research to
explore. More precisely, we conjecture that Z can be realised as a Hilbert scheme on Y as well. In fact, if
we call P1,1,n−3

..= P1 ×P1 ×Pn−3 contained fibre-wise in Pn ,s ,m
..= Pn−1 × Ps × Pn+m−1, we can consider the

incidence variety

F = { (p ,P1,1,n−3)⊂ Pn ,s ,m ×Gn ,s ,m | p ∈ P1,1,n−3 } ,

with Gn ,s ,m as in (1.3).
Notice that F can be described as the zero locus

F = (Fl(1, 2, n )×Fl(1, 2, s +1)×Fl(n +m −3, n +m −2, n +m ),O(1, 0)⊗O(1, 0)⊗Q2) ,

where the first two bundles are the pullback of the ample line bundles from Pn−1 and Ps , and the last is the
pullback of the rank 2 quotient bundle in Gr(n +m −2, n +m ). This implies that the projection p from F to
Y is a Pn−2×Ps−1×Pn+m−2-bundle, while the projection q from F to Gn ,s ,m is a Pn+m−3∪Pn+m−3 generically,
degenerating to a Pn+m−3 over Z . We believe that one should also have an isomorphism

Z ∼=HilbP1,1,n−3
(Y )

with the induced isomorphism in cohomology realised by the classical Abel-Jacobi type p ∗q∗-map. However,
we have not been able to prove this for the time being, and we hope to return to it in the future.

1.3. Toy case I: determinantal. As a first special sub-case, it is worth mentioning the case m = 0, in which
case S is a determinantal hypersurface in Ps . Also, we need s ≤ 3, for from threefolds onwards S will in fact
be singular.

With s = 3, the last case excluded by our theorem, n = 3, is the one of a cubic surface, and we can imme-
diately show that Z and Hilb2(S ) are not isomorphic: as a matter of fact, etop(Hilb2(S )) = etop(Z ) + 21, where
the discrepancy by 21 should be accounted for by the 6 exceptional lines plus the other 15 which are strict
transforms of lines passing through two of the six points.

If we consider n = 4, we have that X ∼= Γ ∼= S , and with three different representations. In this case the
isomorphism was already known to be true from [16, Proposition 1]. In fact in this case S is a determinantal
quartic K3 surface, presented with three different models, hence Z is a hyperkähler fourfold. This construc-
tion is very classical, starting from [6], and the relations between the three models has been recently explored
in [12, 24, 31].

Another interesting case which is covered by our theorem is the one of a determinantal quintic surface,
which we will explore in detail in Section 2.2.

1.4. Toy case II: sub-determinantal. Another relevant case is the sub-determinantal case, i.e. for m = 1. In
this case we can borrow some results from [19, §2.2] and [5, Proposition 3.6] to readily compute the invari-
ants of S . We remark that our smoothness condition forces 3 ≤ s ≤ 5. In fact, the k -th degeneracy locus
Dn−k (ϕ) has expected codimension k (m+k ) in the ambient space Ps . Tence for m = 1, k = 2, it has expected
codimension 6, i.e. Dn−2(ϕ) = ;.

Notice how in this case the map X → Ps is particularly simple, indeed it agrees with the blow up map
X =BlS P

s → Ps .
The structure sheaf of S =Dn−1(ϕ) admits a resolution by the so-called Eagon–Northcott complex. In this

case, it takes the form:

(1.5) 0→F
∨→ E

∨→ det(E∨)⊗det(F )→ (det(E∨)⊗det(F ))|Dn−1(ϕ)→ 0.

This holds more in general for every E ,F of rank (n + 1, n ): in our case it will suffices to take E ∼=O⊕n+1
Ps and

F ∼=OPs (1)⊕n .
One can use suitably twisted versions of this complex to compute some invariants of S , as shown in the

next examples. Of course one could have worked directly on Γ as well, or on X , applying the blow-up formula.
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Proposition 1.3. Fix s = 3 and n > 1. Let ϕ : O⊕n+1
P3 → OP3 (1)⊕n be a general morphism of vector bundles.

Consider the smooth curve Sn
..= Sn ,3,1 =Dn−1(ϕ)⊂ P

3. Then

g (Sn ) = n

�
n

3

�
− (n +1)

�
n −1

3

�
, deg(S ) =

�
n +1

2

�
.

Proof. Consider the Eagon–Northcott resolution of OSn
from (1.5). Twisting back, we have

0→OP3 (−n −1)⊕n →OP3 (−n )⊕n+1→OP3→OSn
→ 0.

We have that

χ (OSn
) =χ (OP3) +χ (OP3(−n −1)⊕n )−χ (OP3(−n )⊕n+1),

i.e.

1− g (Sn ) = 1−n

�
n

3

�
+ (n +1)

�
n −1

3

�
.

Therefore, we only need to check that S is connected. This can be done by splitting (1.5) in two short exact
sequences

0→OP3 (−n −1)⊕n →OP3 (−n )⊕n+1→ K → 0

0→ K →OP3→OSn
→ 0.

Since K has no cohomologies in h 0, h 1, it follows that h 0(OSn
) = h 0(OP3 ) = 1.

In order to compute the degree, it suffices to check the Hilbert polynomial, which for a curve we know to
be equal to pSn

(t ) = d t + 1− g , where d is the degree. Since in general pSn
(t ) = a t + b , we have of course

χ (OSn
) = pSn

(0) = 1− g and

χ (OSn
(1)) = pSn

(1) = 4−n

�
n −1

3

�
+ (n +1)

�
n −2

3

�
,

where we used as before the sequence (1.5). It follows that

a = 3+n

��
n

3

�
−

�
n −1

3

��
− (n +1)

��
n −1

3

�
−

�
n −2

3

��
,

which simplifies to a =
�

n+1
2

�
. The result follows.

Proposition 1.4. Fix s ∈ {3, 4} and n > 1. Letϕ : O⊕n+1
Ps →OPs (1)⊕n be a general morphism of vector bundles.

Then the smooth subvariety Ss ,n
..= Sn ,s ,1 =Dn−1(ϕ)⊂ P

s , of codimension 2, has topological Euler character-
istic

etop(Ss ,n ) =

¨
4n2−2n3 + (3n −4)

�
n
2

�
−
�

n
3

�
if s = 3

n2(10−10n +3n2) +
�

n
2

�
(−10+15n −6n2) +

�
n
3

�
(4n −5)−
�

n
4

�
if s = 4

Proof. See Appendix A.

Lemma 1.5. Fix s = 4. Then the smooth surface Sn ,4,1⊂ P
4 has irregularity q = 0, and geometric genus

pg (Sn ,4,1) = n

�
n

4

�
− (n +1)

�
n −1

4

�
.

Proof. The Euler characteristic of the structure sheaf χ (OSn
) is computed as in the previous proposition,

using the sequence (1.5) on P4. We have in particular that

χ (OSn
) = 1+n

�
n

4

�
− (n +1)

�
n −1

4

�
.

Moreover, Sn is connected and q = 0. The first statement can be proven as in the curve case. The second
follows from the isomorphism Γ ∼= Sn . On the other hand, we know that Γ = (P4 ×Pn−1,O(1, 1)⊕n+1). Hence,
by Lefschetz hyperplane section theorem, the only weight where the cohomology of Γ has non-zero level is
the middle one; therefore, q = 0.

Remark 1.6. From the above lemma one immediately deduces that pg = q = 0 as long as n < 4. Moreover
the same argument tells us that for a threefold which is a degeneracy loci in P5, h 1(OSn

) = h 2(OSn
) = 0 and

h 1,1(Sn ) = 2.
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A nice observation is that the sub-determinantal case n = 4, s = 4, m = 1 and the determinantal case
n = 5, s = 3, m = 0 both give rise to a determinantal quintic, since Γ in both cases is given by

Γ = (P3×P4,O(1, 1)⊕5),

albeit the role of P3 and P4 is exchanged.

2. SOME EXAMPLES

In this section, we collect some examples that do fall within the ‘good range’ prescribed by Theorem A,
and that therefore realise the desired isomorphism Hilb2(S ) ∼= Z . For the sake of completeness, we write
down the Hodge numbers of the varieties involved, which can be computed using the methods detailed in
[9, §3.2].

2.1. The cases n = 3, s = 3, m = 1 and n = 4, s = 2, m = 0. We discuss first an example which is quite classical.
Let us consider S ⊂ P3, where S is a degree 6, genus 3 space curve given by the intersection of four cubics
(i.e. the maximal minors of a 4×3 matrix of linear forms).

In the notation of the previous section, according to (1.1) in the case (n , s , m ) = (3, 3, 1)we have X ⊂ P3×P3,
given as the complete intersection of three divisors of bi-degree (1, 1), i.e. X = (P3×P3,O(1, 1)⊕3). This variety
X is the Fano 3-fold 2–12 in the original Mori–Mukai notation, see [2, 9, 21].

Following the discussion of the previous section, X is identified with the blow-up BlS P
3, see also [8, 2-12].

One can immediately compute the Hodge numbers of X , these being

0 3 3 0
0 2 0

0 0
1

The rational map η : P3 ¹¹Ë P3 induced by this construction is the the cubo-cubic Cremona transformation
of P3 already known to Max Noether, see [22, 28] and it is the only non- trivial Cremona transformation of P3

that is resolved by just one blow up along a smooth curve, see [17].
The second variety in the picture is Y = (P3 ×P3×P2,O(1, 1, 1)). This is a Fano 7-fold, with anti-canonical

class equal to−KY
∼=OY (3, 3, 2). We can apply the Cayley trick from Y to X to determine the Hodge numbers

of Y , which can be also computed using the standard Koszul resolution. These are:

0 0 0 3 3 0 0 0
0 0 0 9 0 0 0

0 0 0 0 0 0
0 0 6 0 0

0 0 0 0
0 3 0

0 0
1

Finally, we consider the variety Z = (Gr(2, 4) × Gr(2, 4) × Gr(2, 3),U∨ ⊠ U∨ ⊠ U∨). By our theorem, Z ∼=
Hilb2(S ) ∼= Sym2(S ). We can check that KZ

∼= OZ (0, 0, 1) and that its Hodge numbers are the expected ones,
namely

3 10 3
3 3

1

Finally, notice that, using the notation of the previous section, the associated triple to (3, 3, 1) is (4, 2, 0). In
this case S4,2,0 ⊂ P

2 is a plane quartic curve, and Z describes its symmetric square as well.

2.2. The case n = 5, s = 3, m = 0 and n = 4, s = 4, m = 1. As before, these two cases define the same surface, in
two different presentations. In fact, the first triple of invariants immediately identifies S5,3,0 ⊂ P

3 as a quintic
determinantal surface, which has Picard rank 2 in general. On the other hand S4,4,1 ⊂ P

4 is a codimension 2
surface defined by 5 quartic equations. However, thanks to Lemma 1.2 they are both isomorphic to the same
Γ , which is

Γ = (P3×P4,O(1, 1)⊕5).

The Hodge numbers of S (of course regardless of the presentation) are as follows:
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4 45 4
0 0

1

We can consider the associated Z = (Gr(2, 5)×Gr(3, 5)×Gr(2, 4),U∨⊠U∨⊠U∨), which is of course the same
in both cases. The Hodge numbers of Z ∼=Hilb2(S ) (see also Appendix B) are:

10 184 1097 184 10
0 0 0 0

4 46 4
0 0

1

2.3. The case n = 6, s = 5, m = 1. If for m ∈ {0, 1} in the surface case our condition n > 2s − 2m − 3 cor-
responded essentially to a non-negative Kodaira dimension, for (m , s ) = (1, 5), the limit case which is not
covered by Theorem A, is a threefold of general type: in fact, we are going to show in Example 6.5 that Z and
Hilb2(S ) are not isomorphic. In fact, the first case with m = 1, s = 5 which is covered by our Theorem is for
n = 6. In this case, the associated triple to (6, 5, 1) is again (6, 5, 1).

Our threefold S6,5,1 ⊂ P
5 is defined by 7 minors (of degree 6): it is isomorphic to Γ = (P5 ×P5,O(1, 1)⊕7).

We can compute the Hodge numbers of S5,6,1, these being:

29 520 520 29
0 2 0

0 0
1

The Hodge numbers of Hilb2(S )∼= Z ⊂Gr(2, 6)×Gr(2, 6)×Gr(5, 7) are

406 15080 150020 271250 150020 15080 406
0 87 1560 1560 87 0

0 0 8 0 0
29 520 520 29

0 3 0
0 0

1

Notice that the Euler characteristic etop(Z ) = 593502 coincides with etop(Hilb2(S )), which is computed in
Appendix B.2.

2.4. The cases n = 4, s = 5, m = 2 and n = 6, s = 3, m = 0. These two associated cases describe two different
presentation for S , as a smooth determinantal sextic and as a codimension 3 surface in P5. Here Γ can be
described as Γ = (P5 ×P3,O(1, 1)⊕6). The Hodge numbers for S are:

10 86 10
0 0

1

We can compute the Hodge numbers of Hilb2(S )∼= Z ⊂Gr(2, 6)×Gr(2, 4)×Gr(4, 6), which are:

55 870 3928 870 55
0 0 0 0

10 87 10
0 0

1

3. KEY CONSTRUCTION AND PREPARATION LEMMAS

In this section we explain the key constructions that will allow us to prove Theorem 5.2.
We fix integers n ≥ 3, m ≥ 0, and s ∈ {m +2 , . . . , 2m +3}.
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3.1. Constructing points in the triple Grassmannian. We shall consider a general map of vector bundles

(3.1) ϕ : O⊕n+m
Ps →OPs (1)⊕n

along with the associated (m +1)-codimensional, smooth degeneracy locus

S = Sn ,s ,m =Dn−1(ϕ) ,→ P
s .

Indeed, by the genericity ofϕ, each degeneracy locus Dk (ϕ) = {p ∈P
s |rank(ϕ(p ))≤ k} ⊂ Ps has codimension

in Ps equal to the expected one, namely (n − k )(n +m − k ). In the range s ∈ {m + 2 , . . . , 2m + 3}, we have
dim Dn−1(ϕ)> 0, and the singularities may only arise in Dn−2(ϕ) = ;, whence the smoothness.

Equivalently,ϕ can be understood from an algebraic point of view as a matrix

M =





f 1
1 . . . f 1

n+m

f 2
1 . . . f 2

n+m
...

...
...

f n
1 . . . f n

n+m



 ∈ Matn ,n+m

�
H0(Ps ,OPs (1))
�

of linear forms f i
j depending on s +1 variables. We shall switch from ϕ to M freely in what follows.

Working in the affine setup, one is led to consider the locus

bS = { v ∈ Vs+1 | rank(Mv ) = n −1 } ⊂ Vs+1,

where Mv ∈Matn ,n+m(C) denotes the matrix M evaluated at the point v ∈ Vs+1. By the linearity of f i
j , the

subvariety bS ⊂ Vs+1 descends to a subvariety S ,→ Ps = P(Vs+1), in such a way that bS ∪ {0} is the affine cone
over S ,→ Ps . We shall use the notation [v ] to denote a point in projective space, to emphasise that we take
the projective point of view.

Consider the set-theoretic map

ψ: S → Pn−1, [v ] 7→ [αv ],

where [αv ] is determined by the 1-dimensional C-vector space

ker

�
OPs (−1)
��⊕n

[v ]

ϕt
[v ]

−→OPs

��⊕n+m

[v ]

�
⊂ OPs (−1)
��⊕n

[v ]
= Vn =C

n .

Of course, if M is the n × (n +m )matrix of linear forms corresponding to the morphism ϕ, then αv ∈ Vn is
defined (up to scalar multiplication) by M t

v ·αv = 0.

Lemma 3.1. The association [v ] 7→ [αv ] defines an algebraic morphismψ: S → Pn−1.

Proof. As already mentioned, since ϕ is general, one has Dn−2(ϕ) = ;, and thus ϕ[v ] has rank precisely n − 1
for every [v ] ∈ S . Therefore the sheafL= coker(ϕ)|S is a locally free sheaf of rank 1, and moreover it is globally
generated by n sections α1, . . . ,αn , arising from the linear dependence relations

α1
[v ]F

1
[v ]+ · · ·+α

n
[v ]F

n
[v ] = 0, [v ] ∈ S ,

where F i
[v ]

denotes the i -th row of the matrix associated to ϕ[v ] = Mv . The data (L,α1, . . . ,αn ) defines the

sought after algebraic morphismψ: S → Pn−1.

Our key construction starts now. Let [v ], [w ] ∈ S be distinct points and consider the space

(3.2) πv ,w = 〈M
t
v ·αw , M t

w ·αv 〉 ⊂ Vn+m .

The following lemma aims to explain the geometric role of πv ,w just defined.

Lemma 3.2. Let [v ], [w ] be two distinct points in S . Then:

(1) dimπv ,w = 0 if and only if the line ℓv ,w joining [v ], [w ] is entirely contained in S , andψ(ℓv ,w ) reduces
to a point in Pn−1.

(2) dimπv ,w = 1 if and only if the line ℓv ,w joining [v ], [w ] is entirely contained in S , andψ(ℓv ,w ) is a line
in Pn−1.

(3) dimπv ,w = 2 if and and only if ψ(ℓv ,w ) ⊂ P
n−1 intersects the line between [αv ] and [αw ] in precisely

two points.

Proof. We proceed case by case.
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(1) 〈αv 〉= 〈αw 〉 if and only if M t
v ·αw =M t

w ·αv = 0; therefore dimπv ,w = 0 if and only if dim〈αv ,αw 〉= 1
and the statement follows by

M t
λv+µw ·αv =M t

λv ·αv +M t
µw ·αv = 0

for every λ,µ∈C.
(2) If dimπv ,w = 1 then there existδ1,δ2 ∈C such thatδ1M t

w ·αv+δ2M t
v ·αw = 0. Therefore M t

λv+µw
(λδ1αv+

µδ2αw ) = λµ
�
δ2M t

v ·αw +δ1M t
w ·αv

�
= 0, so that [λv +µw ] ∈ S for every λ,µ ∈C and the kernels of

the transpose matrices are aligned in Pn−1.
For the converse, first notice that dimπv ,w 6= 0. Moreover, if there exists another point [u ] ∈ ℓv ,w ∩S

with αu =δ1αv +δ2αw , and u =λv +µw . Then λδ2M t
v ·αw +µδ1M t

w ·αv = 0, so that dimπv ,w = 1.
(3) By contradiction, suppose there exists a third point [u ] ∈ ℓv ,w ∩ S with αu = δ1αv +δ2αw , and u =

λv +µw . Thenλδ2M t
v ·αw +µδ1M t

w ·αv =M t
u ·αu = 0, so that dimπv ,w ≤ 1. Viceversa, if dimπv ,w ≤ 1

then ℓv ,w ⊂ S by the above items so that ψ(ℓv ,w ) intersects the line between [αv ], [αw ] either in one
point or in infinite points.

Definition 3.3. We shall use the shorthand notation

Gn ,s ,m =Gr(2, n )×Gr(2, s +1)×Gr(n +m −2, n +m ),

and we shall denote with the same letter U the tautological (sub)bundle on each Grassmannian. There is a
natural sectionω ∈H0(Gn ,s ,m ,U∨⊠U∨⊠U∨) associated to M , defined by

ω: Vn ⊗Vs+1⊗Vn+m −→C, (a , u , b ) 7→ a t ·Mu · b .

We denote by Z = V (ω)⊂Gn ,s ,m its zero scheme.

We note that there is an identity
Z =
�

P ∈Gn ,s ,m : ω
��
P
≡ 0
	

where, if P = (ρ1,ρ2,ρ3), thenω|P ≡ 0 means thatω(a , u , b ) = 0 for every a ∈ρ1, u ∈ρ2, b ∈ρ3.

Definition 3.4. To any pair of distinct points [v ], [w ] ∈S such that dimπv ,w = 2 we can associate the point

P[v ],[w ]=
�
〈αv , αw 〉 , 〈v, w 〉 , π⊥v ,w

�
∈Gn ,s ,m ,

where πv ,w is as defined in Equation (3.2).

Remark 3.5. By Lemma 3.2, there is an immersion

H →Gn ,s ,m , [v ]+ [w ] 7→ P[v ],[w ],

where H = {[v ]+ [w ] ∈ Sym2(S ) \S | dimπv ,w = 2} ⊂ Sym2(S ).

Lemma 3.6. Let P[v ],[w ] be as in Definition 3.4, then P[v ],[w ] ∈ Z .

Proof. We need to prove thatω|P[v ],[w ] ≡ 0. Let a = h1αv +h2αw and u =λv +µw . Then

ω(a , u , b ) = (h1α
t
v +h2α

t
w ) ·Mλv+µw · b

= h1µ (α
t
v ·Mw ) · b +h2λ (α

t
w ·Mv ) · b

= 0.

3.2. Main technical result. In the following, given ρ ∈ Gr(2, k ) we shall denote by [ρ] ⊂ Pk−1 the projective
line defined by ρ. Also, given two distinct points [v ] and [w ] in Ps , we shall denote by ℓv ,w ⊂ P

s the line
connecting them.

The following is the main technical result of the paper.

Theorem 3.7. Let P = (ρ1 ,ρ2 ,ρ3) ∈ Z . Then one of the following holds:

a. there exist two (and only two) distinct points [v ], [w ] ∈ S ∩ [ρ2] such that P = P[v ],[w ],
b. [ρ2]⊂ S andψ([ρ2]) reduces to a point in [ρ1]⊂ P

n−1,
c. there exists exactly one point [v ] ∈S where [ρ2] is tangent and such that [αv ] ∈ [ρ1].
d. [ρ2]⊂ S and [ρ1] =ψ(ℓv ,w )⊂ P

n−1.

Proof. Consider the linear subspace

W(ρ1,ρ2)
=
�

M t
u ·a |a ∈ρ1, u ∈ρ2

	
⊂ Vn+m .

Now, since (ρ1,ρ2,ρ3) ∈ Z , we have W(ρ1,ρ2)
⊂ρ⊥3 so that dim W(ρ1,ρ2)

≤ 2. Let us proceed case by case.
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Suppose dimW(ρ1,ρ2)
= 0 first. This means that M t

u · a = 0 for every u ∈ ρ2 and for every a ∈ ρ1. This is
impossible since it would imply dimker(M t

u ) ≥ 2, i.e. rank(Mu ) < n − 1. But this is in contradiction with the
generality assumption on M .

Next, let us suppose dim W(ρ1,ρ2)
= 1. This means that we can find a basis {M t

u1
· a1} for W(ρ1,ρ2)

. We can
complete to bases {a1, a2} ⊂ρ1 and {u1, u2} ⊂ρ2, in such a way that

M t
u1
·a2 =M t

u2
·a1 = 0 .

In fact, if {a1, a ′2} is any basis for ρ1, then M t
u1
· (ha1 +a ′2) = 0 for some h ∈C. Hence it is sufficient to chose

a2 = ha1+a ′2. A similar argument provides the required choice of u2 ∈ρ2. In particular, [u1], [u2]∈ S and by
assumption M t

u1
·a1 +M t

u2
·a2 = 0 (up to a possible rescale of a2). Therefore

M t
λu1+µu2

· (µa1 +λa2) =λµ(M
t
u1
·a1 +M t

u2
·a2) = 0 ,

so that [ρ2]⊂ S and [ρ1] =ψ(ℓv ,w )⊂ P
n−1. This is the case d in the statement.

Finally, let us suppose dimW(ρ1,ρ2)
= 2, which means W(ρ1,ρ2)

= ρ⊥3 . Notice that we can choose bases
{a1, a2} ⊂ρ1 and {u1, u2} ⊂ρ2, in such a way that

W(ρ1,ρ2)
= 〈ν1,1,ν2,1〉= 〈ν1,2,ν2,2〉,

where

νi , j =M t
ui
·a j , i , j ∈ {1, 2} .

In fact, if dim〈ν1,1 , ν2,1〉= 1 then there exist δ1,δ2 ∈C such that δ1ν1,1+δ2ν2,1 = 0. It follows thatM t
δ1 u1+δ2 u2

·

a1 = 0 so that [δ1u1 +δ2u2] ∈ S . Now if δ1 6= 0 we define u ′1 = δ1u1 +δ2u2 and we replace the basis {u1, u2}

with {u ′1, u2}. Similarly, assuming dim〈ν1,2 , ν2,2〉= 1 one can eventually replace {a1, a2}with {a1, a ′2}.
Hence there exists a matrix Φ ∈Mat2,2(C) realising a coordinate change

�
ν1,2 ν2,2

�
=−
�
ν1,1 ν2,1

�
·Φ,

where we adopted the notation
�
ν1, j ν2, j

�
to denote the (n +m )×2 matrix whose columns are ν1, j and ν2, j .

Our aim is now to study vectors v ∈ ρ2 corresponding to points in [v ] ∈ S with the additional property that
[αv ] ∈ [ρ1]. Such a point is given by the choice of a nonzero vector

�
λ

µ

�
∈C2

together with scalars δ1,δ2 ∈C, not both vanishing, such that

M t
λu1+µu2

· (δ1a1 +δ2a2) = 0.

In particular, it is not restrictive to assume δ2 6= 0 since dim〈ν1,1 , ν2,1〉 = 2. Rename δ = δ1δ
−1
2 ∈ C and

consider the following equalities:

M t
λu1+µu2

· (δa1 +a2) =λδM t
u1
·a1 +µδM t

u2
·a1 +λM t

u1
·a2 +µM t

u2
·a2

=λδν1,1+µδν2,1+λν1,2+µν2,2

=
�
ν1,1 ν2,1

�
·

�
δλ

δµ

�
+
�
ν1,2 ν2,2

�
·

�
λ

µ

�

=
�
ν1,1 ν2,1

�
·

�
δλ

δµ

�
−
�
ν1,1 ν2,1

�
·Φ ·

�
λ

µ

�

=
�
ν1,1 ν2,1

�
· {δ · id−Φ} ·
�
λ

µ

�
.

Now, since dim〈ν1,1,ν2,1〉 = 2 the last line vanishes if and only if δ is an eigenvalue of Φ and
�
λ µ
�t

is an
eigenvector relative toδ. SinceC is algebraically closed, we conclude that the line [ρ2]⊂ P

s always intersects
S in (at least) one point [v ] = [λu1 +µu2] satisfying [αv ] ∈ [ρ1]. More precisely we have the following three
possibilities.

a . The matrix Φ admits two different eigenvalues δ and θ .

In this case we have two (independent) eigenvectors
�
λδ
µδ

�
,
�
λθ
µθ

�
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and the above discussion provides two distinct points

[v ] = [λδu1 +µδu2] ∈ S ∩ [ρ2],

[w ] = [λθ u1+µθu2]∈ S ∩ [ρ2].

Notice that by Lemma 3.2 either we are in case d of the statement or the points [v ], [w ] ∈ S ∩ [ρ2]

are the only ones satisfying the additional property [αv ], [αw ] ∈ [ρ1]. Clearly, in this last case ρ1 =

〈αv ,αw 〉, ρ2 = 〈v, w 〉, and W(ρ1,ρ2)
= 〈M t

vαw , M t
wαv 〉 = πv ,w ; therefore (ρ1,ρ2,ρ3) = P[v ],[w ]. This is

item a in the statement.
b . The matrix Φ admits one eigenvalue δ whose eigenspace is 2-dimensional.

In this case every non-trivial
�
λ µ
�t
∈ C2 is an eigenvector so that the line defined by [ρ2] in Ps is

entirely contained in S . On the other hand the matrix M t
v admits the same kernel δa1 +a2 ∈ ρ1 for

every v ∈ρ2. This is item b in the statement.
c . The matrix Φ admits only one eigenvalue δ whose eigenspace is 1-dimensional.

In this case any eigenvector
�
λ µ
�t

corresponds to the same point [v ] = [λu1 +µu2] ∈ S . Hence [v ]
is the only point in the intersection [ρ2]∩S such that [αv ] ∈ [ρ1]. Moreover, in this case the algebraic

multiplicity of δ is 2; i.e. the multiplicity of the intersection [ρ2]∩S is 2 at [v ]. This is item c in the
statement.

The proof is now complete.

4. EXISTENCE OF SPECIAL LINES

As in the previous section, we fix integers n ≥ 3, m ≥ 0, s ∈ {m+2 , . . . , 2m +3} and a general map of vector
bundles ϕ as in (3.1). Moreover, we shall use the following terminology: a line ℓ ⊂ S = Dn−1(ϕ) ⊂ P

s is said
to be of type b (resp. of type d ) if it arises from a point P ∈ Z satisfying condition b (resp. condition d ) in
Theorem 3.7.

4.1. Excluding lines of type b . The first aim of this section is to understand the fibres of the mapψ, and we
will be particularly interested in the existence of points [α] ∈Pn−1 whose fibreψ−1([α]) is a line in S .

Fix [α] ∈Pn−1 and observe that

(4.1) ψ−1([α]) =
�
[v ] ∈S |M t

v ·α= 0
	
⊂ S

is nothing but the solution set of a linear system of n+m equations in s +1 variables, namely an intersection
of n+m hyperplanes inPs . Therefore the fibre (4.1) is always linear. Moreover, it can be described by means
of a matrix Aα ∈Matn+m ,s+1(C), and by the linearity with respect to α we get an immersion

(4.2) f : Pn−1 ,→ P= P
�
Matn+m ,s+1(C)
�

, [α] 7→ [Aα].

Remark 4.1. Notice that an additional condition s ≤ n+m is essential in order to obtain 0-dimensional fibres
ofψ, and similarly s ≤ n +m +1 is necessary in order to obtain 1-dimensional fibres, as well as s ≤ n +m +2
for 2-dimensional fibres.

Let us denote by Nk ⊂ P the subvariety of matrices of rank at most k . We can easily compute the codimen-
sion of Nk in P as

codim(Nk ) = (n +m −k )(s +1−k ),

so that in particular assuming s ≤ n +m one finds

codim(Ns ) = n +m − s ≥ 0

codim(Ns−1) = 2(n +m − s +1)≥ 2

codim(Ns−2) = 3(n +m − s +2)≥ 6.

Theorem 4.2. Let ψ: S → Pn−1 and f : Pn−1 ,→ P be the maps defined by Lemma 3.1 and (4.2) respectively.
Fix integers n ≥ 3, m ≥ 0, s ∈ {m +2 , . . . , 2m +3}.

(i) Assume s = n +m . Then
(1) ψ is surjective and its generic fibre is a point.
(2) f ◦ψ admits 1-dimensional fibres precisely over Im( f )∩Ns−1.

(ii) Assume s < n +m . Then
(1) ψ is a closed immersion if and only if n > 2s−2m−3, in which case the image of the composition

f ◦ψ is Im( f )∩Ns ⊂ P,
(2) f ◦ψ admits 1-dimensional fibres if and only if n ≤ 2s − 2m − 3, and such fibres arise precisely

over Im( f )∩Ns−1,
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(3) f ◦ψ admits 2-dimensional fibres if and only if n ≤ 1
2 (3s−3m−7), and such fibres arise precisely

over Im( f )∩Ns−2,

Proof. Let us proceed by steps.

(i) First suppose that s = n +m . As already observed the fibre ψ−1([α]) is cut by n +m hyperplanes in
Ps , hence the generic fibre reduces to a point. Moreover, the fibre is 1-dimensional at those [α] such
that f ([α]) ∈ Im( f )∩Ns−1 ⊂ P, which has dimension (n −1)−2= n −3≥ 0.

(ii) Now assume s < n +m . Then the fibre ψ−1([α]) is a point (respectively a line) precisely at those [α]
such that f ([α]) ∈ Im( f )∩Nk ⊂ P with k = s < n +m (respectively k = s − 1 < n +m). Therefore the
image ofψ describes a subvariety of Pn−1 of dimension

dimψ(S ) = (n −1)− codim(Ns ) = (n −1)− (n +m − s ) = s −m −1= dim(S ) ,

while the 1-dimensional fibres ofψ (if they exist) are mapped onto a locus of dimension

(n −1)− codim(Ns−1) = (n −1)−2(n +m − s +1) = 2s −n −2m −3 .

The condition n > 2s − 2m − 3 is the same as codim(Ns−1) = 2(n +m − s + 1) > n − 1, which in turn
is equivalent to require that Ns−1 is empty; here we are using the genericity of the original matrix M

(hence of the form ω) from which it follows the genericity of the immersion of Pn−1 in P through f .
Hence the fibres of the map consist of at most one point if and only if n > 2s −2m −3, in which case
ψ is a closed immersion, as wanted.

Finally, the fibres of dimension at least 2 arise over Im( f )∩Ns−2, for which the expected dimension
is

(n −1)− codim(Ns−2) = (n −1)−3(n +m − s +2) = 3s −2n −3m −7.

This number is non-negative if and only if n ≤ 1
2 (3s −3m −7), as required.

4.2. Excluding lines of type d . The next aim of this section is to show that the lines described by item d of
Theorem 3.7 do not occur whenever n > 2s −3m −2. Recall that these are the lines ℓ⊂ S such that the image
ℓ′ =ψ(ℓ) remains a line in Pn−1.

Theorem 4.3. Let n ≥ 3, m ≥ 0 and s ∈ {m +2 , . . . , 2m +3}.

• If n > 2s −3m −1 then the composition

πZ : Z Gn ,s ,m Gr(2, n )×Gr(2, s +1)ι pr12

is injective, where ι is the natural inclusion and pr12 is the natural projection.
• A line ℓ⊂ S ⊂ Ps such that ℓ′ =ψ(ℓ) remains a line in Pn−1 exists if and only if the map πZ admits an
(n +m −2)-dimensional linear fibre.

Proof. Let us proceed by steps.

• The fibre of πZ over (ρ1,ρ2) ∈Gr(2, n )×Gr(2, s +1) can be easily described as

π−1
Z (ρ1,ρ2) =

n
(ρ1,ρ2,ρ3) ∈Gn ,s ,m

���ρ3 ⊂W ⊥
(ρ1,ρ2)

o

where W(ρ1,ρ2)
= 〈M t

u ·a |a ∈ρ1, u ∈ρ2〉 ⊂ Vn+m . Notice that

W(ρ1,ρ2)
= 〈M t

ui
·a j |1≤ i , j ≤ 2〉

where {a1, a2} and {u1, u2} are arbitrary bases forρ1 andρ2 respectively. In particular, dimW(ρ1,ρ2)
≤

4. Since ρ3 ∈Gr(n +m −2, n +m ), we deduce

π−1
Z (ρ1,ρ2) =






; if dim W(ρ1,ρ2)
≥ 3�

ρ1,ρ2, W ⊥
(ρ1,ρ2)

�
if dim W(ρ1,ρ2)

= 2

Gr
�
n +m −2, W ⊥

(ρ1,ρ2)

�
if dim W(ρ1,ρ2)

= 1

Notice that dimW(ρ1,ρ2)
6= 0, otherwise we would have points u ∈ Vs+1 satisfying rankMu = n −2 and

this is excluded since Dn−2(ϕ) = ;. In particular, for dim W(ρ1,ρ2)
= 1 we have

Gr
�
n +m −2, W ⊥(ρ1,ρ2)

�
∼= P

n+m−2.

On the other hand Z cannot contain an (n +m −2)-dimensional subspace whenever dim(Z ) = 2(s −
m − 1) < n +m − 2, i.e. when n > 2s − 3m . Moreover, in the case n = 2s − 3m , the irreducibility
of Z together with the non injectivity of the map πZ would imply Z ∼= Pn+m−2, which is impossible
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because otherwise the map πZ would be constant so that S would reduce to a line S = [ρ2]
∼= P1 ⊂ Ps .

Of course this is false being n ≥ 3.
• We claim that the existence of a line ℓ ⊂ S such that ℓ′ =ψ(ℓ) remains a line in Pn−1 is equivalent to

the existence of a (n +m − 2)-dimensional fibre of the map πZ . In fact, by Lemma 3.2 the existence
of such a line ℓ is equivalent to a point

(ρ1,ρ2) ∈Gr(2, n )×Gr(2, s +1)

with [ρ1] = ℓ
′ and [ρ2] = ℓ, that moreover satisfies dimW(ρ1,ρ2)

= 1. As shown in the first item this is
equivalent to the condition dimπ−1

Z (ρ1,ρ2) = n +m −2.

In Corollary 4.5 we will be able to give a better bound than the one in Theorem 4.3 in the cases m = 0 and
m = 1.

Remark 4.4. Notice that for large values of m , the bound n > 2s−2m−3 obtained in Theorem 4.2 is stronger
than the one obtained in Theorem 4.3. More precisely,

n > 2s −2m −3 =⇒ n > 2s −3m −1

as soon as m ≥ 2.

4.3. Conclusions. We now summarise the main results of this section in the following corollary.

Corollary 4.5. Let n ≥ 3, m ≥ 0 and s ∈ {m +2 , . . . , 2m +3}. Assume n > 2s −2m −3 and let (ρ1 ,ρ2 ,ρ3) ∈ Z .
Then one of the following holds:

(1) there exist two (and only two) distinct points [v ], [w ] ∈ S ∩ [ρ2] such that P = P[v ],[w ],
(2) there exists exactly one point [v ] ∈S where [ρ2] is tangent and such that [αv ] ∈ [ρ1].

Proof. If m ≥ 2, then by Remark 4.4 the statement is an immediate consequence of Theorem 3.7, Theorem 4.2,
Theorem 4.3.

For m = 1 our assumption becomes n > 2s − 5, so that the hypothesis of Theorem 4.2 are satisfied while
Theorem 4.3 works as soon as n > 2s −4. Let us prove by hand that choosing m = 1 and n = 2s −4 the map

πZ : Z Gn ,s ,m Gr(2, n )×Gr(2, s +1)ι pr12

is still injective. Here ι is the natural inclusion and π is the natural projection. The idea is to exclude high
dimensional fibres following the proof of Theorem 4.3.

(A) Set s = 5, n = 6, m = 1. We have to exclude the existence of a P5 ⊂ Z . However, in this case Z is a 6-
fold with h 2,0 = h 0,2 = 0 and h 1,1 = 3, which in this case is equal to the Picard rank. In fact, the Pic(Z)
is generated by the restrictions of the three Plücker line bundles from the ambient Grassmannians.
Hence, by degree reasons, since Z is smooth, it cannot contain a P5.

(B) Set s = 4, n = 4, m = 1. We have to exclude the existence of a P3 ⊂ Z . This time, we know that Pic(S )
is only generically of rank 2, and the same holds for Z (in fact h 2,0(Z ) = 4). For the same reasons
above, we can therefore exclude the existence of a P3 for a general Z . But this is enough, since we
started by hypothesis from a general matrix, and S - which is a isomorphic to a determinantal quintic
hypersurface also described as a complete intersection in P4 ×P3 - in this case the Picard group will
beZ2 and generated by the two classes hyperplane classes of P4 and P3, and won’t even contain lines
by a Noether-Lefschetz type argument, see [20] and also [7, Theorem 1.2]. Similarly Z won’t contain
a copy of P3.

Hence the statement is proven for every m ≥ 1. We are only left with the case m = 0. In this case our as-
sumption becomes n > 2s − 3, so that the hypothesis of Theorem 4.2 are satisfied while Theorem 4.3 works
as soon as n > 2s −1. Hence we only need to check the following cases, where m = 0 and either n = 2s −1 or
n = 2s −2.

(C) Set s = 2, n = 3, m = 0. Just observe that in this case S is a curve of genus g 6= 0, so that in particular it
does not contain lines and the conclusion follows by the second item in Theorem 4.3.

(D) Set s = 3, n = 5, m = 0. We have to exclude the existence of P3 ⊂ Z . To this aim, it is sufficient to run
exactly the same argument as in case (B).

(E) Set s = 3, n = 4, m = 0. In this case S andψ(S ) in P3 are precisely the K3 surfaces studied by Oguiso
in [23, 24]. Notice that a generic determinantal K3 surface does not contain lines, since the Picard
lattice is �

4 6
6 4

�
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and the square of every other element is divisible by 4. Therefore we do not have (−2)-curves in
general. Hence the second item in Theorem 4.3 implies the injectivity of the map πZ : Z →Gr(2, 4)×
Gr(2, 4) as required.

5. HILBERT SQUARES OF DEGENERACY LOCI

In this section we finally prove our main theorem, namely Theorem A.
We denote by Fl(1, 2, n ) and by Fl(1, 2, s +1) the appropriate flag varieties. Moreover, we denote by

Γψ ⊂ P
n−1×S ⊂ Pn−1×Ps

the graph of the morphismψ of Lemma 3.1.
In the category of C-schemes, we consider the limit V of the following diagram of solid arrows

V

Γψ Fl(1, 2, n )×Fl(1, 2, s +1) Z

P
n−1×Ps Gr(2, n )×Gr(2, s +1)

Notice that, set-theoretically, V can be described as

V =
� �
[v ],ψ([v ]), (ρ1,ρ2,ρ3)

�
∈ Γψ×Z
�� [v ] ∈ [ρ2],ψ([v ]) ∈ [ρ1]

	
,→ Γψ×Z

and via the natural isomorphism Γψ e→S we make the identification

V =
� �
[v ], (ρ1,ρ2,ρ3)
� �� [v ] ∈ [ρ2],ψ([v ]) ∈ [ρ1]

	
,→ S ×Z .

Composing with the projection S ×Z → Z , we obtain a morphism

π: V ,→ S ×Z → Z .

We now show that this morphism defines a modular map Z →Hilb2(S ).

Lemma 5.1. Let n ≥ 3, m ≥ 0, s ∈ {m +2 , . . . , 2m +3}. Assume n > 2s −2m −3. Then the natural morphism

π: V ,→ S ×Z → Z

is a flat family of length 2 subschemes of S .

Proof. Since Z is smooth, in particular reduced, it is enough to prove that the fibre over any closed point is
a finite subscheme of length 2. Flatness is then automatic.

In fact, the fibre π−1(ρ1,ρ2,ρ3) over a point P = (ρ1,ρ2,ρ3) ∈ Z is of the form

π−1(P ) = { ([v ], P ) | [v ] ∈S ∩ [ρ2], [αv ]∈ [ρ1]} .

By Corollary 4.5, this is a length 2 subscheme of S ×{P } if n > 2s −2m −3, which we are assuming.

In particular, if n > 2s−2m−3, the morphismπ gives rise, via the universal property of the Hilbert scheme,
to a morphism

ϑ : Z →Hilb2(S ).

Theorem 5.2. Let n ≥ 3, m ≥ 0, s ∈ {m +2 , . . . , 2m +3}. Assume n > 2s − 2m − 3. Then the morphism
ϑ : Z →Hilb2(S ) is an isomorphism.

Proof. To prove ϑ is an isomorphism, by Zariski’s Main Theorem it is enough to prove it is bijective, since
both source and target are smooth C-varieties of the same dimension 2(s −m −1).

OnC-valued points, the morphism ϑ is defined by

ϑ(P ) = [π−1(P )] ∈ Hilb2(S ).

By the uniqueness conditions spelled out in Corollary 4.5, the map ϑ is injective. By the same argument, one
can see that ϑ(B ) is an injective map of sets for everyC-scheme B . Thus ϑ is a proper monomorphism, i.e. a
closed immersion.

Since source and target are smooth of the same dimension, ϑ is an lci morphism of codimension 0, hence
the tangent map TZ → ϑ

∗THilb2(S ) is an isomorphism, in particular ϑ is étale. Thus it is an open and closed
map to a connected scheme, hence it is surjective.
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6. GEOMETRIC EXAMPLES

Our aim is to list some interesting examples of varieties arising as degeneracy loci that can be described
by Theorem 4.2.

Example 6.1. Let us study in more detail the case m = 1. Recall that we are only interested in applications
with n ≥ 3 and s ∈ {3, 4, 5}. Theorem 4.2 above proves that the map ψ does not contract lines inside S

precisely when one of the following conditions is satisfied:

• n ≥ 3 for curves in P3 (we excluded the case of the twisted cubic obtained for n = 2),
• n ≥ 4 for surfaces in P4,
• n ≥ 6 for threefolds in P5.

Moreover, again by Theorem 4.2, under the assumption n ≥ 3 the map ψ does not admit 2-dimensional
fibres.

Example 6.2 (White surfaces). Fix m ≥ 0 and choose s =m+3 and n = s −m = 3. Now, the degeneracy locus
Sm is a surface inPm+3. Moreover, by Theorem 4.2 the mapψ: Sm → P

2 is surjective and generically injective.
The exceptional divisor (i.e. the union of the 1-dimensional fibres) arises over a 0-dimensional locus so that
Sm is the blow up of P2 at c points. Again by Theorem 4.2, c can be easily computed as the degree of Ns−1 in
P(Mats ,s+1(C)), namely

c =
(s +1)!

(s −1)!2!
=

�
m +4

2

�
.

We also observe the following:

• For m = 0 we obtain the determinantal cubic surface S0 ⊂ P
3 realised as the blow up of P2 in 6 points.

• For m = 1 we recover the classical construction of the Bordiga surface S1 ⊂ P
4 realised as the blow

up of P2 in 10 points, see e.g. [26]. In this case etop(Z ) = 94, with h 1,1 = 12, h 2,2 = 68 and the other
relevant Hodge numbers being 0. On the other hand, Hilb2(S1) has topological Euler characteristic
104, with h 2,2 = 78.

In the general caseSm ⊂ P
m+3 is nothing but the (m+3)-th White surface named after F. Puryer White, see [32].

Example 6.3 (Generalised Bordiga scrolls over P2). Fix m ≥ 1 and choose s =m + 4 and n = s −m − 1 = 3.
Notice that the condition m ≥ 1 ensures that s ∈ {m +2 , . . . , 2m +3}. In this case the degeneracy locus Bm is
a threefold in Pm+4. Since the fibre of the mapψ: Bm → P

2 is cut by n+m = s −1 equations, the generic fibre
ofψ is 1-dimensional. On the other hand, following the same argument of the proof of Theorem 4.2 it is im-
mediate to see that 2-dimensional fibres of f ◦ψmay only arise over Im( f )∩Ns−3 = ;, being codim(Ns−3) = 8.
Hence the mapψ is surjective and realises Bm ⊂ P

m+4 as a P1-bundle over P2, so that Bm is the projectivisa-
tion of a rank 2 vector bundle over P2.

In particular, for m = 1 we recover the classical construction of the Bordiga scroll B1 ⊂ P
5, i.e. the (rational,

non Fano) variety described by PP2 (E ), with E a rank 2 stable bundle with c1(E ) = 4, c2(E ) = 10, see e.g. [25].

We were not able to find a precise reference for the threefolds described in Example 6.3, so that we decided
to call these threefolds generalised Bordiga scrolls, in analogy with the classical Bordiga scroll, see e.g. [25].

Example 6.4 (White varieties). Choose m ≥ 0, and 3 ≤ n ≤ m + 3. Fix s = n +m ∈ {m + 3 , . . . , 2m + 3}.
Denote by Wm ,n = Dn−1(ϕ) the usual degeneracy locus. Then by Theorem 4.2 the map ψ: Wm ,n → P

n−1 is
surjective and generically injective. In particular, dimWm ,n = n − 1. Moreover, 1-dimensional fibres arise
over an (n −3)-dimensional locus.

We also observe the following:

• For any m ≥ 0, Wm ,3 is nothing but the (m +3)-th White surface denoted by Sm in Example 6.2.
• For any m ≥ 1, Wm ,4 ⊂ P

m+4 is a threefold that contains a P1-scroll over a curve W′m ,4 ⊂ P
3. We can

also compute the degree and the genus of W′m ,4 as

deg(W′m ,4) = deg(Nm+3) =

�
m +5

2

�

g (W′m ,4) = (m +4)

�
m +4

3

�
− (m +5)

�
m +3

3

�
,

as proved in Proposition 1.3.
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We were not able to find a precise reference for the construction spelled out in Example 6.4, so we decided
to call these (n −1)-folds White varieties, in analogy with the usual White surfaces described in Example 6.2.

Apart from the limit case of White varieties (s = n +m) we provide examples for which s ≤ n +m but Z

need not to be isomorphic to Hilb2(S ). More precisely, it may be interesting to investigate the limit case when
n = 2s −2m −3. Notice that, given m ≥ 0, assuming s ∈ {m +2, . . . , 2m +3} the system

¨
s ≤ n +m

n = 2s −2m −3≥ 3

implies s ≥m +3 and n ≤ 2m +3.

Example 6.5 (n = 2s−2m−3). Fix m ≥ 0, s ∈ {m+3, . . . , 2m+3}, and choose n = 2s −2m−3. By Theorem 4.2
the mapψmaps the degeneracy locus Mm ,s ⊂ P

s onto a certain variety M′m ,s ⊂ P
n−1 of dimension s −m −1,

having a finite number c of special points over which the fibres are 1-dimensional. Notice that it is easy to
compute c , since it equals the degree of Ns−1 inside P(Matn+m , s+1(C)), which is given by the formula [26]

c = deg(Ns−1) =

1∏

i=0

(n + i +m )! i !

(s + i −1)! (n +m − s + i +1)!

=
1

s

�
2s −m −2

s −1

��
2s −m −3

s −1

�
.

Remarkably, the same proof of Theorem 4.3 excludes lines of type d as soon as m ≥ 3. Notice that the
choice s =m +3 implies n = 3, so that in particular we recover the White surfaces described in Example 6.2,
i.e. Mm ,m+3 = Sm .

m = 0: In this case we only have the White surface M0,3 = S0 ⊂ P
3.

m = 1: In this case, apart from the Bordiga surface M1,4 = S1 already discussed in Example 6.2, we may only
choose s = n = 5. Then M1,5 is a threefold in P5. By the above formula there are c = 105 fibres of
dimension 1 and the image of M1,5 inside P4 is a determinantal threefold M′1,5 = f −1(Im( f )∩N5) of
degree 6, whose singular locus consists exactly of these 105 points. In fact, M1,5 is a small resolution
of M′1,5. Notice how in this case etop(Z ) = 46158 and etop(Hilb2(S1,5)) = 46053 by Appendix B.2. Their

difference is exactly 105 so that in particular Z 6∼=Hilb2(M1,5).
m = 2: In this case, apart from the White surface M2,5 = S2, we may choose s = 6 and n = 5 or s = n = 7.

Now, by Theorem 4.2, M2,6 ⊂ P
6 is a threefold, and the map ψ contracts c = 1

6

�8
5

��7
5

�
= 196 lines. On

the other hand M2,7 ⊂ P
6 is a fourfold, and the mapψ contracts c = 1

7

�10
6

��9
6

�
= 2520 lines.

Example 6.5 leads us to formulate the following conjecture.

Conjecture 6.6. Fix m ≥ 1, s ∈ {m +3, . . . , 2m +3}, and choose n = 2s −2m −3. Then

etop(Hilb2(Mm ,s ))− etop

�
Zn ,s ,m

�
= (−1)dim(Mm ,s )

1

s

�
2s −m −2

s −1

��
2s −m −3

s −1

�
.

Notice that in Example 6.2 and Example 6.5 we have shown that the above conjecture holds true for m =

1. We also did the computation for White surfaces taking higher values of m confirming the prediction of
Conjecture 6.6.

On the other hand we excluded the case m = 0, for which the conjecture is easily seen to fail. However,
this can be justified by noticing that M0,3 = S0 contains 15 lines of type d (arising as birational transforms of
lines in P2 passing through 2 out of the 6 points of P2), and indeed we compute the difference to be

etop(Hilb2(M0,3))− etop(Z3,3,0) = 6+15 .

As already remarked in Example 6.5 it is immediate to see that for m ≥ 3 the varietiesMm ,s do not admit lines
of type d , and actually we do not expect this to happen even in the cases m = 1 and m = 2.

We are particularly interested in Conjecture 6.6 since it would imply for instance that the bound provided
by Theorem 5.2 is optimal.

APPENDIX A. EULER CHARACTERISTIC OF HILBERT SQUARES

The goal of this appendix is to give a detailed proof of Proposition 1.4. We shall exploit a nontrivial Chern
class calculation on (smooth) degeneracy loci following Pragacz [27].

Fix m = 1 throughout this section. Let s ∈ {3, 4}, and consider, as ever, a general map ϕ : F → E between
vector bundlesF =O⊕n+1

Ps andE =OPs (1)⊕n . The k -th degeneracy locus ofϕ is the closed subscheme Dk (ϕ)⊂
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P
s defined by the condition rank(ϕ)≤ k , which is (locally) equivalent to the vanishing of the (k+1)-minors of
ϕ. We are interested in the case k = n−1, which leads to Dn−2(ϕ) of expected codimension 6, and Dn−1(ϕ) of
expected codimension 2. Sinceϕ is general, we have Dn−2(ϕ) = ;, so that Dn−1(ϕ)⊂ P

s is a smooth subvariety
of codimension 2. In the case s = 4, we shall denote it by Sn ⊂ P

4, whereas in the case s = 3 we shall denote
it by Cn ⊂ P

3.
We start assuming s = 4, the case s = 3 being essentially a truncation of the case s = 4. Let H ∈ A1(P4)

denote the first Chern class of OP4 (1). The ordinary Segre class of E is the class

es (E ) =
∑

0≤i≤4

esi (E ) = (1+H )−n ,

with esi (E ) ∈ Ai (P4) =Z[H i ] sitting in codimension i . Inverting the Chern class

c (E ) = 1+nH +

�
n

2

�
H 2+

�
n

3

�
H 3+

�
n

4

�
H 4

we find

es1(E ) =−c1(E ) =−nH

es2(E ) = s1(E )
2− c2(E ) =

�
n2 −

�
n

2

��
H 2

es3(E ) =−s1(E )c2(E )− s2(E )c1(E )− c3(E ) =

�
−n3−

�
n

3

�
+2n

�
n

2

��
H 3

es4(E ) =−s1(E )c3(E )− s2(E )c2(E )− s3(E )c1(E )− c4(E )

=

�
n4 +2n

�
n

3

�
−3n2

�
n

2

�
+

�
n

2

�2
−

�
n

4

��
H 4.

We set si = (−1)i esi (E ) for 0 ≤ i ≤ 4. Then, unraveling [27, Example 5.8 (ii)], we have, for the smooth surface
Sn ⊂ P

4, an identity

(A.1) etop(Sn ) = s2c2(P
4)−
�
s(2,1)+2s3

�
c1(P

4) + s(2,1,1)+3s(3,1)+3s4,

given the Schur polynomials

s(2,1) =

����
s2 s3

s0 s1

����=
����
s2 s3

1 s1

����= s2s1− s3

s(3,1) =

����
s3 s4

s0 s1

����=
����
s3 s4

1 s1

����= s3s1− s4

s(2,1,1) =

������

s2 s3 s4

s0 s1 s2

0 s0 s1

������
=

������

s2 s3 s4

1 s1 s2

0 1 s1

������
= s2(s

2
1 − s2)− (s1s3 − s4).

Expanding, we obtain

s2c2(P
4) = 10n2 −10

�
n

2

�

�
s(2,1)+2s3

�
c1(P

4) = 5(s2s1 + s3)H = 10n3 −15n

�
n

2

�
+5

�
n

3

�

s(2,1,1) = n

�
n

3

�
−

�
n

4

�

3s(3,1) =

�
n

2

��
3n2 −3

�
n

2

��
−3n

�
n

3

�
+3

�
n

4

�

3s4 = 3n4 +6n

�
n

3

�
−9n2

�
n

2

�
+3

�
n

2

�2
−3

�
n

4

�
.

Formula (A.1) then yields

etop(Sn ) = n2(10−10n +3n2) +

�
n

2

�
(−10+15n −6n2) +

�
n

3

�
(4n −5)−

�
n

4

�
.
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In the case of a smooth determinantal curve Cn ⊂ P
3, i.e. when we set s = 3, we only need to use

s0 = 1, s1 = nH , s2 =

�
n2 −

�
n

2

��
H 2, s3 =

�
n3 +

�
n

3

�
−2n

�
n

2

��
H 3.

In this case, [27, Example 5.8 (i)] gives

etop(Cn ) = s2c1(P
3)− s(2,1)−2s3 = 4H s2− (s2s1 − s3)−2s3 = 4H s2− s2s1− s3

= 4n2 −4

�
n

2

�
−n3 +n

�
n

2

�
−n3 −

�
n

3

�
+2n

�
n

2

�

= 4n2 −2n3+ (3n −4)

�
n

2

�
−

�
n

3

�
.

The formulas for etop(Sn ) and etop(Cn ) prove Proposition 1.4.

APPENDIX B. HODGE–DELIGNE POLYNOMIAL OF HILBERT SQUARES

We again set m = 1 throughout this section. We shall consider once more smooth (sub-determinantal)
degeneracy loci S =Dn−1(ϕ)⊂ P

s (of dimension 2 or 3), and we shall compute the Hodge–Deligne polynomial

E (Hilb2(S ); u , v ) =
∑

p ,q≥0

h p ,q (Hilb2(S ))(−u )p (−v )q ∈ Z[u , v ]

via standard motivic techniques, exploiting the power structure on the Grothendieck ring of varieties K0 (VarC)
[14], as well as our knowledge of the Hodge numbers of S (cf. Section 2).

B.1. Surface case: (s , n , m ) = (4, 4, 1). Let us consider the smooth determinantal surface S4 =D3(ϕ)⊂ P
4. By

Göttsche’s formula [13] for the motive of the Hilbert scheme of points on a surface, combined with the main
result of [14], there is an identity

∑

n≥0

�
Hilbn (S4)
�

q n =
∏

n>0

�
1−Ln−1q n
�−[S4]

in K0(VarC)Jq K, where exponentiation is to be thought of in the language of power structures. The Hodge–
Deligne polynomial of a smooth projective C-variety Y is the polynomial

E (Y ; u , v ) =
∑

p ,q≥0

h p ,q (Y )(−u )p (−v )q ∈ Z[u , v ].

We have, on Z[u , v ], the power structure defined by the identity
�
1−q
�− f (u ,v )

=
∏

i , j

�
1−u i v j q
�−pi j

if f (u , v ) =
∑

i , j pi j u i v j . Looking at the Hodge diamond depiced in Section 2.2, we deduce

E (S4; u , v ) = 1+4u2+45u v +4v 2+u2v 2,

and since E (−) defines a morphism K0(VarC) → Z[u , v ] of rings with power structure sending L 7→ u v , we
have an identity
∑

n≥0

E (Hilbn (S4); u , v )q n =
∏

n>0

�
1−un−1v n−1q n

�−E (S4;u ,v )

=
∏

n>0

�
1−q
�−E (S4;u ,v ) ��

q 7→u n−1v n−1q n

=
∏

n>0

�
1−un−1v n−1q n

�−1 �
1−un+1v n−1q n

�−4
·

·
�
1−un v n q n
�−45 �

1−un−1v n+1q n
�−4 �

1−un+1v n+1q n
�−1

where the substitution q 7→ un−1v n−1q n is possible thanks to the properties of a power structure.
Expanding and isolating the coefficient of q 2 gives

E (Hilb2(S4); u , v ) = 1+46u v +4(u2 + v 2) +1097u2v 2+184(u v 3 +u3v ) +10(u4+ v 4)

+46u3v 3+4(u4v 2+u2v 4) +u4v 4,

in full agreement with the Hodge diamond depicted in Section 2.2.
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B.2. Threefold case: (s , n , m ) = (5, 5, 1). In the case (s , n , m ) = (5, 5, 1), we obtain a smooth threefold S5,5,1 ⊂ P
5

outside the ‘good range’ of Theorem A, cf. Example 6.5. There is an identity [14, 29]

ZS5,5,1
(q ) =
∑

n≥0

�
Hilbn (S5,5,1)
�

q n =

�∑

n≥0

�
Hilbn (A3)0
�
q n

�[S5,5,1]

in K0(VarC)Jq K, where Hilbn (A3)0 denotes the punctual Hilbert scheme, namely the subscheme of Hilbn (A3)

parametrising subschemes entirely supported at the origin 0 ∈ A3. Let us define classes Ωn ∈ K0(VarC) via
the relation

∑

n≥0

�
Hilbn (A3)0
�
q n = Exp

�∑

n>0

Ωn q n

�
=
∏

n>0

�
1−q n
�−Ωn .

Since Hilb1(A3)0 = SpecC and Hilb2(A3)0 = P
2, one can easily compute Ω1 = 1 and Ω2 =L+L

2. Therefore

ZS5,5,1
(q ) =
∏

n>0

�
1−q n
�−Ωn [S5,5,1] ,

which implies

(B.1)
∑

n≥0

E (Hilbn (S5,5,1); u , v )q n =
∏

n>0

�
1−q n
�−E (Ωn ;u ,v )E (S5,5,1;u ,v )

.

One can compute the Hodge–Deligne polynomial of S5,5,1 to be

E (S5,5,1; u , v ) = 1+2u v +2u2v 2+u3v 3− (5u3 +151u2v +151u v 2 +5v 3),

so that extracting the coefficient of q 2 from (B.1), one obtains

E (Hilb2(S5,5,1); u , v ) =

�
(1−u3q )5(1− v 3q )5(1−u v 2q )151(1−u2v q )151

(1−q )(1−u v q )2(1−u2v 2q )2(1−u3v 3q )

�

q 2

+ (u v +u2v 2)E (S5,5,1; u , v ).

In particular, the topological Euler characteristic is

etop(Hilb2(S5,5,1)) = E (Hilb2(S5,5,1); 1, 1) = 46053= etop(Z5,5,1)−105.

B.3. Threefold case: (s , n , m ) = (5, 6, 1). In the case (s , n , m ) = (5, 6, 1), we get a smooth threefold S5,6,1 ⊂ P
5.

Using the Hodge diamond depicted in Section 2.3, one has

E (S5,6,1; u , v ) = 1+2u v +2u2v 2+u3v 3− (29u3 +520u2v +520u v 2 +29v 3).

Formula (B.1) applied to this case yields

E (Hilb2(S5,6,1); u , v ) =

�
(1−u3q )29(1− v 3q )29(1−u v 2q )520(1−u2v q )520

(1−q )(1−u v q )2(1−u2v 2q )2(1−u3v 3q )

�

q 2

+ (u v +u2v 2)E (S5,6,1; u , v ).

In particular,
etop(Hilb2(S5,6,1)) = E (Hilb2(S5,6,1); 1, 1) = 593502,

in complete agreement with what one gets out of the Hodge diamond for Z depicted in Section 2.3.
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