While the aerodynamics of solid bluff bodies is reasonably well-understood and methodologies for their reliable numerical simulation are available, the aerodynamics of porous bluff bodies formed by assembling perforated plates has received less attention. The topic is nevertheless of great technical interest, due to their ubiquitous presence in applications (fences, windbreaks and double skin facades to name a few). This work follows previous investigations by the authors, aimed at verifying the consistency of numerical simulations based on the explicit modelling of the perforated plates geometry and their representation by means of pressure-jumps. In this work we further expand such investigations and, contextually, we provide insight into the flow arrangement and its sensitivity to important modelling and setup configurations. To this purpose, Unsteady Reynolds-Averaged Navier-Stokes (URANS) and Large-Eddy Simulations (LES) are performed for a 5:1 rectangular cylinder at null angle of attack. Then, using URANS, porosity and attack angle are simultaneously varied. To the authors' knowledge this is the first time in which LES are used to model a porous bluff body and compare results obtained using the explicit modelling approach to those obtained relying on pressure-jumps. Despite the flow organization often shows noticeable differences, good agreement is found between the two modelling strategies in terms of drag force.

Simulation of porous claddings using LES and URANS: A 5:1 rectangular cylinder / Xu M.; Patruno L.; Lo Y.-L.; de Miranda S.; Ubertini F.. - In: WIND AND STRUCTURES. - ISSN 1226-6116. - ELETTRONICO. - 35:1(2022), pp. 67-81. [10.12989/was.2022.35.1.067]

Simulation of porous claddings using LES and URANS: A 5:1 rectangular cylinder

Xu M.;Patruno L.;de Miranda S.;Ubertini F.
2022

Abstract

While the aerodynamics of solid bluff bodies is reasonably well-understood and methodologies for their reliable numerical simulation are available, the aerodynamics of porous bluff bodies formed by assembling perforated plates has received less attention. The topic is nevertheless of great technical interest, due to their ubiquitous presence in applications (fences, windbreaks and double skin facades to name a few). This work follows previous investigations by the authors, aimed at verifying the consistency of numerical simulations based on the explicit modelling of the perforated plates geometry and their representation by means of pressure-jumps. In this work we further expand such investigations and, contextually, we provide insight into the flow arrangement and its sensitivity to important modelling and setup configurations. To this purpose, Unsteady Reynolds-Averaged Navier-Stokes (URANS) and Large-Eddy Simulations (LES) are performed for a 5:1 rectangular cylinder at null angle of attack. Then, using URANS, porosity and attack angle are simultaneously varied. To the authors' knowledge this is the first time in which LES are used to model a porous bluff body and compare results obtained using the explicit modelling approach to those obtained relying on pressure-jumps. Despite the flow organization often shows noticeable differences, good agreement is found between the two modelling strategies in terms of drag force.
2022
Simulation of porous claddings using LES and URANS: A 5:1 rectangular cylinder / Xu M.; Patruno L.; Lo Y.-L.; de Miranda S.; Ubertini F.. - In: WIND AND STRUCTURES. - ISSN 1226-6116. - ELETTRONICO. - 35:1(2022), pp. 67-81. [10.12989/was.2022.35.1.067]
Xu M.; Patruno L.; Lo Y.-L.; de Miranda S.; Ubertini F.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/913569
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact