For modelling superconductors, interpolation and analytical formulas are commonly used to consider the relationship between the critical current density and other electromagnetic and physical quantities. However, look-up tables are not available in all modelling and coding environments, and interpolation methods must be manually implemented. Moreover, analytical formulas only approximate real physics of superconductors and, in many cases, lack a high level of accuracy. In this paper, we propose a new approach for addressing this problem involving artificial intelligence (AI) techniques for reconstructing the critical surface of high temperature superconducting (HTS) tapes and predicting their index value known as n-value. Different AI models were proposed and implemented, relying on a public experimental database for electromagnetic specifications of HTS tapes, including artificial neural networks (ANN), eXtreme Gradient Boosting (XGBoost), and kernel ridge regressor (KRR). The ANN model was the most accurate in predicting the critical current of HTS materials, performing goodness of fit very close to 1 and extremely low root mean squared error. The XGBoost model proved to be the fastest method, with training computational times under 1 s; whilst KRR could be used as an alternative solution with intermediate performance.

Russo G., Yazdani-Asrami M., Scheda R., Morandi A., Diciotti S. (2022). Artificial intelligence-based models for reconstructing the critical current and index-value surfaces of HTS tapes. SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 35(12), 1-15 [10.1088/1361-6668/ac95d6].

Artificial intelligence-based models for reconstructing the critical current and index-value surfaces of HTS tapes

Russo G.;Scheda R.;Morandi A.;Diciotti S.
2022

Abstract

For modelling superconductors, interpolation and analytical formulas are commonly used to consider the relationship between the critical current density and other electromagnetic and physical quantities. However, look-up tables are not available in all modelling and coding environments, and interpolation methods must be manually implemented. Moreover, analytical formulas only approximate real physics of superconductors and, in many cases, lack a high level of accuracy. In this paper, we propose a new approach for addressing this problem involving artificial intelligence (AI) techniques for reconstructing the critical surface of high temperature superconducting (HTS) tapes and predicting their index value known as n-value. Different AI models were proposed and implemented, relying on a public experimental database for electromagnetic specifications of HTS tapes, including artificial neural networks (ANN), eXtreme Gradient Boosting (XGBoost), and kernel ridge regressor (KRR). The ANN model was the most accurate in predicting the critical current of HTS materials, performing goodness of fit very close to 1 and extremely low root mean squared error. The XGBoost model proved to be the fastest method, with training computational times under 1 s; whilst KRR could be used as an alternative solution with intermediate performance.
2022
Russo G., Yazdani-Asrami M., Scheda R., Morandi A., Diciotti S. (2022). Artificial intelligence-based models for reconstructing the critical current and index-value surfaces of HTS tapes. SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 35(12), 1-15 [10.1088/1361-6668/ac95d6].
Russo G.; Yazdani-Asrami M.; Scheda R.; Morandi A.; Diciotti S.
File in questo prodotto:
File Dimensione Formato  
russo22.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 4.49 MB
Formato Adobe PDF
4.49 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/906194
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 16
social impact