Predictive maintenance and structural health monitoring are challenging and promising research fields today. In particular, cost-effective and long-term monitoring of wind turbines has been proven to be one of the key elements to successfully increase their efficiency. Accurate numerical modeling and real-time control-in-the-loop play an increasingly prominent role in understanding and optimizing blade aerodynamic and acoustic performances. A non-intrusive and modular measurement system is a prerequisite for long-term measurement campaigns in existing and future wind turbines. Current methods of performing aerodynamic and acoustic field measurements are cumbersome and expensive, leading to a shortage of aerodynamic and acoustic datasets on operating wind turbines. This paper demonstrates the ability of the new Aerosense system to operate successfully in the field. Aerosense is a long-lasting battery-operated and flexible wireless sensor node that can directly measure aerodynamic and acoustic effects on wind turbine blades. It consists of an array of state-of-the-art Micro-Electro-Mechanical Systems (MEMS) sensors, including 40 barometers and 10 microphones, combined with an ultra low power system-on-chip with wireless transmission over Bluetooth 5.1. Experimental results demonstrate the possibility of continuously acquiring data for up to four months on a single lithium battery of 8.7 Ah, featuring an absolute accuracy of 10Pa and an audio bandwidth of 6kHz.

Aerosense: Long-Range Bluetooth Wireless Sensor Node for Aerodynamic Monitoring on Wind Turbine Blades

Polonelli T.
;
Benini L.;
2022

Abstract

Predictive maintenance and structural health monitoring are challenging and promising research fields today. In particular, cost-effective and long-term monitoring of wind turbines has been proven to be one of the key elements to successfully increase their efficiency. Accurate numerical modeling and real-time control-in-the-loop play an increasingly prominent role in understanding and optimizing blade aerodynamic and acoustic performances. A non-intrusive and modular measurement system is a prerequisite for long-term measurement campaigns in existing and future wind turbines. Current methods of performing aerodynamic and acoustic field measurements are cumbersome and expensive, leading to a shortage of aerodynamic and acoustic datasets on operating wind turbines. This paper demonstrates the ability of the new Aerosense system to operate successfully in the field. Aerosense is a long-lasting battery-operated and flexible wireless sensor node that can directly measure aerodynamic and acoustic effects on wind turbine blades. It consists of an array of state-of-the-art Micro-Electro-Mechanical Systems (MEMS) sensors, including 40 barometers and 10 microphones, combined with an ultra low power system-on-chip with wireless transmission over Bluetooth 5.1. Experimental results demonstrate the possibility of continuously acquiring data for up to four months on a single lithium battery of 8.7 Ah, featuring an absolute accuracy of 10Pa and an audio bandwidth of 6kHz.
2022
Polonelli T.; Deparday J.; Muller H.; Fischer R.; Benini L.; Barber S.; Magno M.
File in questo prodotto:
File Dimensione Formato  
Aerosense Long Range Bluetooth Wireless Sensor Node for Aerodynamic Monitoring on Wind Turbine Blades.pdf

accesso aperto

Descrizione: versione editoriale
Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 2.06 MB
Formato Adobe PDF
2.06 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/905000
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact