This paper introduces a novel deep framework for dense 3D reconstruction from multiple image frames, leveraging a sparse set of depth measurements gathered jointly with image acquisition. Given a deep multi-view stereo network, our framework uses sparse depth hints to guide the neural network by modulating the plane-sweep cost volume built during the forward step, enabling us to infer constantly much more accurate depth maps. Moreover, since multiple viewpoints can provide additional depth measurements, we propose a multi-view guidance strategy that increases the density of the sparse points used to guide the network, thus leading to even more accurate results. We evaluate our Multi-View Guided framework within a variety of state-of-the-art deep multi-view stereo networks, demonstrating its effectiveness at improving the results achieved by each of them on BlendedMVG and DTU datasets.

Multi-View Guided Multi-View Stereo

Matteo Poggi;Andrea Conti;Stefano Mattoccia
2022

Abstract

This paper introduces a novel deep framework for dense 3D reconstruction from multiple image frames, leveraging a sparse set of depth measurements gathered jointly with image acquisition. Given a deep multi-view stereo network, our framework uses sparse depth hints to guide the neural network by modulating the plane-sweep cost volume built during the forward step, enabling us to infer constantly much more accurate depth maps. Moreover, since multiple viewpoints can provide additional depth measurements, we propose a multi-view guidance strategy that increases the density of the sparse points used to guide the network, thus leading to even more accurate results. We evaluate our Multi-View Guided framework within a variety of state-of-the-art deep multi-view stereo networks, demonstrating its effectiveness at improving the results achieved by each of them on BlendedMVG and DTU datasets.
2022
Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2022)
8391
8398
Matteo Poggi, Andrea Conti, Stefano Mattoccia
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/902910
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
social impact