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Multi-View Guided Multi-View Stereo

Matteo Poggi∗, Andrea Conti∗ and Stefano Mattoccia
University of Bologna

Abstract— This paper introduces a novel deep framework for
dense 3D reconstruction from multiple image frames, leveraging
a sparse set of depth measurements gathered jointly with
image acquisition. Given a deep multi-view stereo network,
our framework uses sparse depth hints to guide the neural
network by modulating the plane-sweep cost volume built
during the forward step, enabling us to infer constantly much
more accurate depth maps. Moreover, since multiple viewpoints
can provide additional depth measurements, we propose a
multi-view guidance strategy that increases the density of the
sparse points used to guide the network, thus leading to even
more accurate results. We evaluate our Multi-View Guided
framework within a variety of state-of-the-art deep multi-view
stereo networks, demonstrating its effectiveness at improving
the results achieved by each of them on BlendedMVG and
DTU datasets.

I. INTRODUCTION

Multi-view stereo (MVS) is a popular technique to obtain
dense 3D reconstructions of real-world objects or scenes
from a set of multiple, posed images. It represents a first,
pivotal step towards a variety of higher-level applications,
such as augmented/virtual reality, robotics, cultural heritage
and more. It represents one of the fundamental problems in
computer vision and it has been studied for years, at first by
developing classical algorithms [2], [3], [7], [8], [29], making
use of hand-crafted matching functions to measure consis-
tency among the multiple views. However, many challenges
keep MVS an open problem, such as occlusions between the
views, lack of texture or non-Lambertian surfaces, to name
a few [1], [17], [30].

The advent of deep learning in computer vision, in partic-
ular with the introduction of Convolutional Neural Networks
(CNNs), allowed for rapid progress even in geometric tasks
such as MVS, partially overcoming some of the issues
mentioned above. Indeed, deep MVS networks [46], [47],
[42], [40], [10], [19] are spreading, thanks to their ever-
increasing accuracy on popular benchmarks [14], [30], [17].
Common to most CNNs developed for this purpose is the
presence of a 3D cost volume [46], built using plane-
sweeping over the source views features and computing their
similarity with respect to the reference image features. Such
a volume is usually regularized through 3D convolutional
layers – or other, more efficient alternatives, such as 2D
Long-Short Term Memory (LSTM) layers [47] – before
regressing the final depth map. However, despite the more
robust features representation extracted by 2D CNNs and
the strong regularization achieved through 3D convolutions,
the high-demanding computational requirements still limit
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Fig. 1. Multi-View Guided Multi-View Stereo in action.
Deep MVS networks struggle at generalizing from synthetic
to real images, yielding inaccurate depth maps and poor
3D reconstructions (top). By guiding the network with a set
of sparse depth measurements, aggregated over the multiple
views, we can greatly ameliorate the results (bottom). Depth
maps are encoded with turbo_r colormap, while sparse
depth hints on bottom row are densified by a 2× 2 dilation
filter to ease visualization in this teaser.

the full deployment of such solutions, often requiring some
trade-off between accuracy and complexity. For instance,
inferring depth at resolution lower than the one of the input
images [46] or implementing coarse-to-fine strategies [10],
[45], [4]. Moreover, several challenges mentioned above,
such as dealing with untextured regions, thin objects or
occlusions, remain open.

We argue that most of the challenges mentioned so far are
inherent to the image domain itself. Thus, their impact could
be significantly softened given the availability of additional
information with different modalities, for instance, by having
access to a sparse set of depth measurements perceived by an
active sensor. Nowadays, such sensors are at hand and read-
ily available as standalone off-the-shelf devices. Moreover,
they are always more frequently integrated into consumer
products like mobile phones and tablets (e.g., Apple iPhones
and iPads). However, despite their ever-increasing diffusion,
they often provide only sparse depth data (i.e., at a much
lower resolution compared to standard cameras).

The recent literature supports our intuition, highlighting
the evidence of approaches effectively exploiting the synergy
of color images with sparse depth data. For instance, in the
case of depth completion [37], fusion with stereo algorithms
[22], [23] and networks [26], [5], [41] or, more recently, with
optical flow deep architectures [25] as well.

Driven by these facts, we propose a framework for guided

ar
X

iv
:2

21
0.

11
46

7v
1 

 [
cs

.C
V

] 
 2

0 
O

ct
 2

02
2

turbo_r


multi-view stereo depth estimation. Assuming the availability
of a sparse set of depth measurements acquired together with
images, we modulate [26] the cost volume built by any state-
of-the-art MVS network [46], [10], [44], [4], [40] to provide
stronger guidance to the architecture towards inferring more
accurate depth maps. Moreover, by exploiting the possibility
of having multiple sets of sparse depth points acquired from
the different viewpoints of the source images, we introduce
an integration mechanism to accumulate the multiple depth
hints enabling modulating the cost volume inside the deep
network with a higher density of guiding points. This allows
to boost the performance of a MVS network, allowing it
to infer more accurate depth maps, and consequently higher
quality 3D reconstructions, for instance when trained on syn-
thetic data and tested on real images, as shown in Fig. 1. To
validate this claim, we run an exhaustive set of experiments
by training a variety of state-of-the-art MVS architectures
and their guided counterparts on the BlendedMVG [48] and
DTU [14] datasets and assessing their accuracy on them. This
proves that our framework consistently boosts the accuracy
achievable with any considered deep networks in terms of
depth map estimation and overall 3D reconstruction when
guidance is available. Our contributions are:
• We propose the Guided Multi-View Stereo framework

(gMVS), extending [26] to cope with our purposes.
Then, on top of that, we propose the Multi-View Guided
Multi-View Stereo (mvgMVS) to exploit multiple sets
of depth hints acquired from different viewpoints of the
multi-view reconstruction task.

• We introduce coarse-to-fine guidance by applying cost
volume modulation multiple times during the forward
pass, compliantly to the coarse-to-fine strategy followed
by recent MVS networks [10], [4], [40].

• We implement the proposed mvgMVS framework
within five state-of-the-art deep architectures [46], [10],
[44], [4], [40], each one characterized by different
regularization and optimization strategies.

II. RELATED WORK

We review the literature relevant to our work concerning
stereo vision, traditional MVS approaches, deep MVS net-
works and guided/conditioned deep learning frameworks.

Stereo Matching. Predicting depth from a set of calibrated
images is a fundamental task in computer vision and stereo
matching [28] represents the simplest approach for this
purpose, leveraging two rectified images. This task has been
faced through hand-crafted algorithms for years [36], [33],
[11], until deep learning diffusion. At first, hand-crafted
features used to compute matching costs were replaced with
learned ones [49], then end-to-end architectures [21], [15],
[50] became dominant on the stage [27].

Multi-View Stereo. MVS extends stereo matching to an
arbitrary number of images, acquired from known view-
points. Pre-deep learning techniques belongs to four cate-
gories, respectively reasoning about voxels [32], [39], [31],
surface evolution [18], matching patches [7] or estimated
depth maps [9]. The latter strategy results the most practical

and efficient and has been embraced by modern deep learning
MVS architectures. The first proposal in this direction was
MVSNet [46], a deep network building a variance-based
cost volume through plane-sweep, then processed through
3D convolutions. However, 3D CNNs are time and memory
consuming and two main strategy have been propose to
soften these constraints. The first consist of replacing 3D
convolutions with 2D GRU unit [47], [44], [43]. The second
implements multi-stage architectures capable of coarse-to-
fine inference [10], [4], [40] or pyramidal cost volumes [45].

Depth Completion and Guided Frameworks. Two other
research trends are relevant to our work. One concerns depth
prediction from a single RGB image and sparse depth points,
namely depth completion [38], [20], [35], [12]. The second
concerns the idea of conditioning deep features, by either
acting in latent [13], [6], [24] or geometric space [5], [26],
[25] via normalization or modulation.

Our proposal to leverage sparse depth data within MVS
networks takes inspiration from previous successes in stereo
[26] and optical flow [25]. Nonetheless, we arguably extend
the previous guided deep learning formulation under different
aspects for our purposes. Specifically: i) considering multiple
sources of depth hints, placed at different viewpoints, to
increase the guide density and effectiveness and ii) applying
modulation within coarse-to-fine architectures – unexplored
in previous works [26], [25].

III. PROPOSED FRAMEWORK

In this section, we introduce our Multi-View Guided
Multi-View Stereo (mvgMVS) framework. First, we review
the background relevant to our proposal, specifically con-
cerning deep MVS networks. Then, we cast the guided stereo
matching framework [26] into the MVS setting and, finally,
we extend it to deal with multi-view depth hints and coarse-
to-fine architectures.

A. Deep Multi-View Stereo background

Most learning-based MVS pipelines follow the same pat-
tern. Given a set of N images, one assumed as the reference
and the other N − 1 as source images, deep MVS networks
process them to predict a global dense depth map aligned
with the reference one. To this aim, common to most deep
networks designed for this purpose is the definition of a cost
volume, encoding features similarity between pixels in the
reference image and potential matching candidates from the
source images. The latter are retrieved along the epipolar
lines in the source views, given intrinsic and extrinsic param-
eters K,E for any camera collecting the N images involved.
Specifically, for a particular depth hypothesis z ∈ [zmin, zmax],
features Fi extracted from a given source view i are projected
by means of an homography-based warping operation π.

Fz
i = π(Fi, z,K0, E0,Ki, Ei) (1)

Then, to encode the similarity between reference features F0

and Fz
i , a variance-based volume is defined as follows



Fig. 2. Hints aggregation. Depth hints from many views (left) can be aggregated on the reference image viewpoint (right).

V(z) =
∑N

i=0(Fz
i − µ)2

N
, µ =

∑N
i=0 Fz

i

N
(2)

with Fz
i consisting of F0 for i = 0. Accordingly, for a

given pixel, the lower the variance score, the more similar
the features retrieved from the source views are and, thus,
the more likely hypothesis z is the correct depth for it.

However, implementing this solution requires high mem-
ory and results computationally complex. Consequently, sev-
eral state-of-the-art networks [10], [44], [4], [40] implement
a coarse-to-fine solution. Specifically, a set of variance-based
cost volumes are built as

Vs(z) =
∑N

i=0(F̂d
(i,s) − µ)

2

N
, µ =

∑N
i=0 F̂z

(i,s)

N
(3)

being s a specific resolution or scale at which the cost volume
is computed and F̂z

(i,s) features from image i at resolution s
sampled as

F̂z
(i,s) = π(F(i,s), zs,K(0,s), E0,K(i,s), Ei) (4)

with K(i,s) being the intrinsic parameters for camera i
adjusted to resolution s and zs sampled in a range [zsmin, z

s
max]

that differs at any scale.

B. Guided Multi-View Stereo

By assuming a setup made of a standard camera and a low-
resolution depth sensor, for instance a LiDAR, we leverage
the output of the latter to shape the behavior of a deep net-
work estimating depth from a set of color images. When this
set is limited to a single frame, a neural network is usually
trained to complete the sparse depth points [37] guided by the
color image [34]. When multiple images are available, the
mechanism often reverses, and depth measurements are used
as hints to guide the image-based estimation process. This
strategy is implemented, for instance, by the Guided Stereo
framework [26] applied to binocular stereo, by applying a
Gaussian modulation to the features volume to peak it in
correspondence of a depth hint z.

In analogy, this mechanism can be applied also to multi-
view stereo, implementing a Guided Multi-View Stereo
pipeline (gMVS). Indeed, the variance volume introduced
in Sec. III-A can be conveniently modulated as well. In this
case, since low variance encodes a high likelihood of the
corresponding depth hypothesis z to be correct, we flip the
Gaussian curve to force the variance-based cost volume to
have a minimum near depth hint z∗

(a) (c)

 (b)

   (d)

Fig. 3. Depth hints filtering. On left, reference image (a). On
right, sparse hints over the region inside red rectangle in (a),
respectively from the single viewpoint (b), aggregated over
multiple viewpoints (c) and filtered (d). Regions in yellow
rectangles in (c) and (d) highlight the effect of filtering.
Depth points are densified to ease visualization.

V ′(z) =
[
1− v + v · k ·

(
1− e−

(z−z∗)2

2c2

)]
· V(z) (5)

with v being a binary mask equal to 1 for pixels with a valid
hint (0 otherwise) and k, c being the amplitude and width
of the Gaussian itself. The gMVS formulation outlined so
far extends the Guided Stereo framework [26] to MVS. In
the remainder, we will introduce two significant additional
contributions conceived explicitly for the MVS setup and the
models designed for it.

C. Multi-View Guided Multi-View Stereo

MVS relies on the availability of multiple images ac-
quired from different viewpoints. Moreover, we assume the
availability of sparse depth measurements registered with the
colour images in our setup. Therefore, a different set of hints
is available for each source image. In such a case, we argue
that aggregating the multiple sets of depth hints from each
viewpoint can provide stronger guidance to the network and
further improve the results of the baseline gMVS framework.
To this aim, we perform two main steps.

Depth hints aggregation. Given a pixel having homoge-
neous 2D coordinates qi from any source image i ∈ [1, N ]
for which a depth value d∗qi is available, the 3D coordinates
p0 in the reference image viewpoint are obtained as:

p0 = E0E
−1
i pi with pi = d∗qiK

−1
i qi (6)

From p0, we can get the new depth hint d∗q0 expressed in
the reference image viewpoint, and project it on the image
plane according to K0 at coordinates q0.

This allows to aggregate depth hints on the reference view,
as shown in Fig. 2, and thus obtain a denser depth hints



map to modulate the volume in the network with stronger
guidance. We refer to this extension of the gMVS framework
as Multi-View Guided Multi-View Stereo (mvgMVS)

Depth hints filtering. Because of the different viewpoints,
some of the depth measurements acquired in one of the
source views may belong to occluded regions in the reference
view. However, given the sparse nature of the hints, this
would cause the aggregation of several wrong values if we
would limit to naively projecting them across the views
without reasoning about their visibility, as shown in Fig. 3
(b). As a consequence, we would guide the deep network
with wrong depth hints, harming its accuracy. To detect and
remove these outliers, we deploy the filtering strategy by
Zhao et al. [51], defining as outlier any pixels q0 for which
exists at least a pixel s in its neighbourhood S(q0) such that:

• q0 changes the relative position with respect to s,
because occluded. This occurs if the difference between
q0 and s pixels coordinates and angles (in spherical
coordinates) have different sign, i.e. if either (xq0 −
xs)(θq0 − θs) or (yq0 − ys)(φq0 − φs) are negative

• q0 distance from the camera is much higher compared
to s, i.e. dq0 > ds + ε, with ε set according to the
specific dataset used

Although simple, this strategy allows for removing most of
the outliers at a minor computational cost, as shown in Fig.
3 (c). We will show in our ablation experiments how this
step is necessary to achieve optimal guidance. We refer to
this final implementation as filtered mvgMVS (fmvgMVS).

D. Coarse-to-Fine Guidance

Unlike deep stereo networks, which usually build a single
volume processed through stacked 3D convolutions, MVS
networks are often designed to embody coarse-to-fine esti-
mation to reduce the computational burden, as introduced
previously in Sec. III-A. We argue that any of the multiple
cost volumes built by the network represent a possible
entry point for guiding the network. Accordingly, we then
modulate any Vs during the forward pass

V ′s(zs) =
[
1− vs + vs · k ·

(
1− e−

(zs−z∗s )2

2c2

)]
· Vs(zs)

(7)
with vs and z∗s being respectively the binary mask v and
the depth hints map z∗ downsampled to resolution s, with
nearest-neighbor interpolation. Our experiments will show
how the stronger guidance yielded by these multiple modu-
lations improves the overall network accuracy.

IV. EXPERIMENTAL RESULTS

In this section, we collect the outcome of our experiments
describing, at first, the datasets involved in our evalua-
tion, details concerning the framework implementation, the
networks evaluated and the training protocol. Source code
is available at https://github.com/andreaconti/
multi-view-guided-multi-view-stereo.

A. Datasets

We begin by introducing the datasets involved in our
experiments. Since none of the existing MVS data collection
provides sparse depth points, we simulate the availability
of sparse hints by randomly sampling them from ground-
truth depth maps, similarly to [26], [25]. Consequently, for
our experiments, we can select only datasets providing such
information, i.e. we cannot evaluate on Tank & Temples [17].

BlendedMVG. This dataset [48] collects about 110K
images sampled from about 500 scenes. It has been created
by applying a 3D reconstruction pipeline to recover high-
quality textured meshes from images of well-selected scenes.
Then, meshes are rendered to color images and depth maps.
Following [48] we retain 8 sequences for validation and 7
for testing, using the rest for training each network involved
in our experiments.

DTU [1]. This indoor dataset counts 124 different scenes,
all sharing the very same camera trajectory. Images are
acquired with a structured light scanner mounted on a robot
arm, using one of the cameras in the scanner itself. We
select training, validation and testing splits following existing
works [46], [10], [44], [4], [40]. In particular, we evaluate
on the testing split both networks trained on BlendedMVG
alone or after being fine-tuned on the DTU training set.

B. Implementation details

Our framework is implemented in PyTorch, starting from
existing solutions [40]. Concerning gMVS, we simulate the
availability of sparse depth hints by randomly sampling 3%
of pixels from the ground-truth depth maps. Following [26],
[25], we set k = 10 and c = 0.01. Regarding filtering, we
set ε = 3. We conduct our experiments implementing gMVS
and variants with five state-of-the-art networks.

MVSNet [46]. The very first deep network for MVS: it
builds a single variance volume and process it through 3D
convolutions – similarly to 3D stereo networks [16] – and
estimates depth at a quarter of the input resolution.

D2HC-RMVSNet [44]. A recurrent architecture, replacing
3D convolutions with 2D convolutional LSTM to reduce
memory requirements.

CAS-MVSNet [10]. It implements a cascade cost volume
formulation, inferring depth in a coarse-to-fine manner to
achieve higher efficiency.

UCSNet [4]. It builds Adaptive Thin Volumes for coarse-
to-fine processing. The volumes consist of only a few depth
hypotheses selected by modeling uncertainty.

PatchMatchNet [40]. A very efficient model, implement-
ing a differentiable variant of the PatchMatch algorithm [2]
within a deep network.

Any network is implemented by integrating the authors’
code in our framework and following their default config-
uration – except for the number of depth hypotheses used
by MVSNet and D2HC-RMVSNet, set to 128 because of
memory constraints. During both training and evaluation, if
the final output of the original network is lower than the
input resolution, it is upsampled to the original size through
interpolation.

https://github.com/andreaconti/multi-view-guided-multi-view-stereo
https://github.com/andreaconti/multi-view-guided-multi-view-stereo


Network Hints dens. >1 Px. >2 Px. >3 Px. >4 Px.

MVSNet [46] - 0.139 0.073 0.046 0.031

MVSNet-g 0.03 0.095 0.046 0.027 0.018
MVSNet-mvg 0.03 0.081 0.040 0.024 0.016
MVSNet-fmvg 0.03 0.076 0.037 0.023 0.015

MVSNet-g 0.15 0.068 0.032 0.020 0.013

TABLE I. Ablation study – guiding strategy. Results on
BlendedMVG [48] testing scans.

Network Hints dens. >1 Px. >2 Px. >3 Px. >4 Px.

MVSNet-fmvg 0.03 0.076 0.037 0.023 0.015

GuideNet-fmvg 0.03 0.290 0.124 0.080 0.058

TABLE II. Ablation study – mvgMVS versus depth
completion. Results on BlendedMVG [48] testing scans.

C. Training and testing protocol

We set the number of images processed by the networks
to 5, both during training and testing. Accordingly, we
accumulate depth hints coming from 5 views for mvgMVS.

Training schedule. We train each network for 100K
iterations on the BlendedMVG dataset on 576×768 images,
with a constant learning rate of 10−3 – except D2HC-
RMVSNet, for which it was set to 10−4 to avoid instability.
Any training has been carried out on a single Titan Xp GPU,
allowing only for a single sample per batch – except for
PatchMatchNet, for which batch 2 fits in memory.

We also fine-tune each network for 50K further iterations
on the DTU training set, processing 512 × 640 images and
using the hyper-parameters as detailed for BlendedMVG.

Testing protocol. We test the networks on the Blend-
edMVG testing sequences and on the DTU testing split.
For each dataset, we report the percentage of pixels in
the estimated depth map having an error larger than τ –
respectively in pixels and millimetres on the two datasets,
with thresholds set to 1, 2, 3 and 4. Concerning DTU, we
also evaluate the quality of reconstructed point clouds: in the
former case, we report accuracy and completeness metrics
defined as in [1] and their average – the lower the better.
Fused point clouds are obtained as in [40].

D. Ablation study

We start by studying the impact of the different compo-
nents in our framework, with the main emphasis on mvgMVS
extension and coarse-to-fine modulation.

Multi-View Guided MVS. We first measure the improve-
ments yielded by multi-view guidance. To this aim, we run
experiments with MVSNet, by training different variants on
the BlendedMVG training split and evaluating on the testing
sequences. Tab. I collects the outcome of this experiment.
From top to bottom, we report the error rates achieved by
the original MVSNet architecture, by a variant implementing
the baseline guided MVS framework described in Sec. III-
B (-g), followed by mvgMVS versions respectively without
(-mvg) and with (-fmvg) filtering.

Starting from the gMVS baseline, it consistently achieves
reduced error rates compared to MVSNet by exploiting

Network Stages >1 Px. >2 Px. >3 Px. >4 Px.

CAS-MVSNet [10] - 0.071 0.036 0.023 0.016

CAS-MVSNet-fmvg 1 0.057 0.024 0.014 0.010
CAS-MVSNet-fmvg 2 0.084 0.042 0.027 0.019
CAS-MVSNet-fmvg 3 0.078 0.041 0.027 0.020
CAS-MVSNet-fmvg All 0.048 0.018 0.012 0.009

TABLE III. Ablation study – multi-stage guidance. Results
on BlendedMVG [48] testing scans.

Network >1 Px. >2 Px. >3 Px. >4 Px.

MVSNet [46] 0.139 0.073 0.046 0.031
MVSNet-fmvg 0.076 0.037 0.023 0.015

D2HC-RMVSNet [44] 0.174 0.094 0.059 0.040
D2HC-RMVSNet-fmvg 0.081 0.041 0.025 0.017

CAS-MVSNet [10] 0.071 0.036 0.023 0.016
CAS-MVSNet-fmvg 0.048 0.018 0.012 0.009

UCSNet [4] 0.071 0.038 0.024 0.017
UCSNet-fmvg 0.040 0.018 0.011 0.008

PatchMatchNet [40] 0.075 0.039 0.025 0.018
PatchMatchNet-fmvg 0.062 0.033 0.022 0.016

TABLE IV. Evaluation on BlendedMVG [48] testing
scans. Comparison between original MVS networks[46],
[10], [44], [4], [40] and their guided counterparts.

the sparse depth guidance. Concerning mvgMVS, there are
further improvements thanks to the aggregation of multiple
sets of depth hints coming from the 5 different viewpoints.
Nonetheless, even if this strategy increases the hints density
from 3% up to roughly 15%, the improvement might appear
not significant as one might expect with a more extensive set
of hints. This fact is due to the several hints in non-visible
parts of the source images that are wrongly projected in
the reference point of view, as discussed previously. Indeed,
by filtering out these outliers and consequently reducing the
hints density to about 14%, we can improve the performance
of MVSNet further when guided by mvgMVS. At the bottom
of the table, we also report the performance achieved by
MVSNet when guided by the baseline gMVS implementation
and 15% hints density. Not surprisingly, having a higher
density of depth hints from the single reference viewpoint
is more effective than aggregating them over multiple view-
points because they are not affected by visibility and possible
collisions between projected points. However, fmvgMVS
achieves performance close to what attainable with a depth
sensor providing a much denser guide.

To conclude this study, we also compare the performance
of our MVSNet-fmvg with a depth completion framework.
Purposely, we select GuideNet [35] and train it to process
single, RGB images and multi-view aggregated sparse depth
points – the very same used to guide MVSNet – for 100K
iterations on BlendedMVG as done for MVSNet. Tab. II
directly compares the error rates achieved by both highlight-
ing how, when multiple sets of depth hints are available,
the guided multi-view framework yields better depth maps
compared to a depth completion approach.

Coarse-to-fine strategy. We now ablate the coarse-to-fine
guidance mechanism introduced in Sec. III-D, by training
different variants of CAS-MVSNet. Tab. III reports results on



Network

MVSNet [46]
MVSNet-fmvg

D2HC-RMVSNet [44]
D2HC-RMVSNet-fmvg

CAS-MVSNet [10]
CAS-MVSNet-fmvg

UCSNet [4]
UCSNet-fmvg

PatchMatchNet [40]
PatchMatchNet-fmvg

Depth map evaluation Point cloud evaluation

>1 mm >2 mm >3 mm >4 mm Acc. (mm) Comp. (mm) Avg. (mm)

0.658 0.457 0.368 0.326 0.764 0.468 0.616
0.393 0.227 0.194 0.180 0.383 0.264 0.324

0.708 0.519 0.423 0.372 0.764 0.586 0.675
0.401 0.177 0.134 0.115 0.393 0.234 0.314

0.558 0.385 0.330 0.303 0.589 0.310 0.450
0.323 0.243 0.220 0.207 0.345 0.286 0.316

0.541 0.402 0.357 0.333 0.561 0.344 0.453
0.199 0.174 0.164 0.157 0.290 0.264 0.277

0.627 0.440 0.370 0.335 0.574 0.484 0.529
0.446 0.328 0.301 0.287 0.339 0.297 0.318

Depth map evaluation Point cloud evaluation

>1 mm >2 mm >3 mm >4 mm Acc. (mm) Comp. (mm) Avg. (mm)

0.555 0.340 0.268 0.237 0.635 0.304 0.470
0.219 0.103 0.081 0.072 0.324 0.235 0.280

0.630 0.423 0.329 0.283 0.662 0.342 0.502
0.168 0.079 0.061 0.054 0.327 0.240 0.284

0.480 0.307 0.257 0.233 0.528 0.262 0.395
0.082 0.056 0.047 0.042 0.228 0.279 0.254

0.506 0.332 0.277 0.254 0.551 0.272 0.412
0.119 0.105 0.098 0.095 0.319 0.281 0.300

0.475 0.310 0.260 0.236 0.461 0.298 0.380
0.336 0.228 0.204 0.193 0.325 0.230 0.278

(a) trained on BlendedMVG (b) fine-tuned on DTU

TABLE V. Evaluation on DTU [1] testing scans. Comparison between MVS networks [46], [10], [44], [4], [40] and guided
counterparts, trained on BlendedMVG and tested (a) without re-train or (b) after fine-tuning on DTU training split.

RGB D2HC-RMVSNet [44] Hints D2HC-RMVSNet-fmvs

CAS-MVSNet [10] CAS-MVSNet-fmvs

Fig. 4. Qualitative results on DTU dataset – scan9 (top) and scan114 (bottom). Depth maps and point clouds yielded
by D2HC-RMVSNet (top), CAS-MVSNet (bottom) and guided counterparts trained on BlendedMVG.

the BlendedMVG testing split. From top to bottom, we report
error rates achieved by the original CAS-MVSNet without
guidance, three models guided during one out of the total
three stages implemented by the network (i.e. modulating
only one out of the three volumes built during inference),
and finally the model guided by modulating any single
volume. All guided models implement the filtered mvgMVS
formulation. In general, guiding the volume computed only
during the first stage already improves the results of the
original network. Guiding the second or third stage alone
fails at even improving the results by CAS-MVSNet when
not guided. Nonetheless, providing a consistent modulation
across the three stages allows for the best results.

E. Multi-View Guided MVS networks

We now evaluate the impact of the mvgMVS framework
on the five state-of-the-art networks selected for our experi-
ments. Specifically, we train both the original networks and
their counterpart guided employing filtered mvgMVS.

Evaluation on BlendedMVG. We start by evaluating all
the networks on the BlendedMVG testing split, collecting the
results in Tab. IV. By looking at the original networks, we
can notice that models implementing coarse-to-fine process-
ing [10], [4], [40] result, in general, more accurate compared
to MVSNet and D2HC-RMVSNet, achieving about half the
error rates with any threshold. This gap is bridged by guiding
both with the filtered mvgMVS framework.

Guided counterparts of CAS-MVSNet, UCSNet and
PatchMatchNet are further improved too. In particular, CAS-
MVSNet-fmvg and UCSNet-fmvg almost halve the error
rates at any given threshold, while PatchMatchNet-fmvg
benefits from the guidance in minor measure. We ascribe

this latter fact to the random initialization performed at
the very first stage of PatchMatchNet, left unchanged when
implementing its guided counterpart.

Generalization to DTU. We now aim at assessing the
impact of the multi-view guided framework on the gen-
eralization capacity of the networks to unseen datasets.
Purposely, we evaluate the five networks and their guided
counterparts on the DTU testing split without fine-tuning on
the DTU training split. Tab. V (a) collects the outcome of
this experiment, reporting error metrics on both estimated
depth maps (left), as well as on 3D point clouds (right).

By focusing on the former, differently from the experi-
ments on BlendedMVG, we can notice a consistent margin
between MVSNet/D2HC-RMVSNet and coarse-to-fine mod-
els [10], [4], [40] only concerning the number of pixels with
error larger than 1 or 2 mm, with mixed results at the increase
of the threshold. By looking at guided counterparts, we can
appreciate how they always produce much more accurate
depth maps, dramatically reducing the error rates.

Concerning the quality of the reconstructed 3D point
cloud, we can observe that coarse-to-fine models achieve
both better accuracy and completeness than MVSNet/D2HC-
RMVSNet, confirming their effectiveness. Finally, when
guided by accumulated depth hints, any network dramatically
improves the quality of the fused point clouds, confirming
that considerable improvements on single depth maps trans-
lates in better 3D reconstructions.

To summarize, this experiment suggests that mvgMVS no-
tably improves the generalization capacity of MVS networks
concerning depth maps accuracy and 3D reconstruction qual-
ity. Fig. 4 shows some qualitative examples.

Fine-tuning and evaluation on DTU. To confirm that



Network Test Hints >1 Px. >2 Px. >3 Px. >4 Px.

MVSNet [46] - 0.139 0.073 0.046 0.031

MVSNet-fmvg 0.03 0.076 0.037 0.023 0.015
MVSNet-fmvg 0.02 0.087 0.043 0.026 0.017
MVSNet-fmvg 0.01 0.109 0.054 0.033 0.022
MVSNet-fmvg 0.00 0.244 0.165 0.126 0.101

TABLE VI. Ablation study – changing density at testing
time. Validation errors on BlendedMVG [48] testing scans,
MVSNet is trained with 3% hints density and tested with
different densities.

the effect of our framework on 3D reconstructions is not
limited to generalization scenarios, we fine-tune all the
previous networks on the DTU training split and evaluate
their performance. Tab. V (b) collects results concerning both
estimated depth maps (left) and point clouds (right).

Concerning the original networks, we witness a behaviour
similar to the one observed in Tab. V (a), with a margin
between coarse-to-fine models and the others, which is
consistent only concerning pixels with error larger than 1
mm. Not surprisingly, any network performs better after
being fine-tuned, both in terms of depth maps accuracy and
point cloud quality. However, by looking at guided networks,
we can notice how their accuracy is further boosted by the
fine-tuning phase, with drops of the error rates much higher
than those achieved by the original models.

By looking at reconstructed point clouds, for the original
networks, we can observe the same trend as in Tab. V, with
coarse-to-fine models generally producing higher quality
point clouds. Once again, the more accurate depth maps
yielded by mvgMVS correspond to better reconstructions.

To summarize, our experiments highlight that the mvg-
MVS framework constantly outperforms the original coun-
terpart concerning generalization capability, as well as when
data for fine-tuning is available.

Limitations. Although our experiments highlight the po-
tential of the Multi-View Guided Multi-View Stereo frame-
work, effective on both synthetic and real datasets, our pro-
posal suffers from a limitation that may be important in some
environments: networks trained with a specific hints density
do not generalize to less dense hints inputs. Specifically, once
a guided network has been trained with a fixed density of
input depth points, if such density is not guaranteed at the
testing time, the performance will drop. Table VI investigates
this behaviour with a further experiment carried out using
MVSNet guided with 3% hints aggregated over the views
during training and tested with varying density. We can
notice how, by reducing the number of hints, the network
performance lowers as well, although still resulting better
than the original MVSNet trained without guidance (first
row). However, by neglecting the hints at all (last row), the
performance dramatically drops below the original MVSNet.
This behaviour highlights that the network itself exploits the
hints almost blindly when trained with them, losing much
accuracy when the hints are not available during deployment,
consistently with [26]. Future research will explore better
training protocols enabling the slightest drop in accuracy

in such circumstances. Moreover, the current evaluation is
conducted by simulating the availability of depth hints from a
sensor. Further experiments with real sensing devices would
allow to assess the robustness of the framework to noise in
the depth sparse points, as studied in [26].

V. CONCLUSION

In this paper, we have presented a novel framework for
accurate MVS depth estimation. Starting from the successes
in binocular stereo [26], we extended guided stereo to fully
exploit the potential of the multi-view setup by aggregating
multiple depth hints acquired from different viewpoints. Our
experiments with five state-of-the-art MVS networks show
the effectiveness of our framework, constantly generating
much more accurate depth maps and consequently enabling
the reconstruction of higher-quality point clouds. This be-
haviour is consistent either when generalizing from synthetic
to real data or after fine-tuning on real images.
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