Low-power wearable systems are essential for medical and industrial applications, but they face crucial implementation challenges when providing energy-efficient compact design while increasing the number of available channels, sampling rate and overall processing power. This work presents a small (39×41mm) wireless embedded low-power HMI device for ExG signals, offering up to 16 channels sampled at up to 4kSPS. By virtue of the high sampling rate and medical-grade signal quality (i.e. compliant with the IFCN standards), BioWolf16 is capable of accurate gesture recognition and enables the possibility to acquire data for neural spikes extraction. When employed over an EMG gesture recognition paradigm, the system achieves 90.24% classification accuracy over nine gestures (16 channels @4kSPS) while requiring only 16mW of power (57h of continuous operation) when deployed on Mr. Wolf MCU, part of the system architecture. The system can also provide up to 14h of real-time data streaming (4kSPS), which can further be extended to 23h when reducing the sampling rate to 1kSPS. Our results also demonstrate that this design outperforms many features of current state-of-the-art systems. Clinical Relevance - This work establishes that BioWolf16 is a wearable ultra-low power device enabling advanced multi-channel streaming and processing of medical-grade EMG signal, that can expand research opportunities and applications in healthcare and industrial scenarios.
Donati, R., Kartsch, V., Benini, L., Benatti, S. (2022). BioWolf16: a 16-channel, 24-bit, 4kSPS Ultra-Low Power Platform for Wearable Clinical-grade Bio-potential Parallel Processing and Streaming [10.1109/EMBC48229.2022.9871898].
BioWolf16: a 16-channel, 24-bit, 4kSPS Ultra-Low Power Platform for Wearable Clinical-grade Bio-potential Parallel Processing and Streaming
Donati, Riccardo;Kartsch, Victor;Benini, Luca;Benatti, Simone
2022
Abstract
Low-power wearable systems are essential for medical and industrial applications, but they face crucial implementation challenges when providing energy-efficient compact design while increasing the number of available channels, sampling rate and overall processing power. This work presents a small (39×41mm) wireless embedded low-power HMI device for ExG signals, offering up to 16 channels sampled at up to 4kSPS. By virtue of the high sampling rate and medical-grade signal quality (i.e. compliant with the IFCN standards), BioWolf16 is capable of accurate gesture recognition and enables the possibility to acquire data for neural spikes extraction. When employed over an EMG gesture recognition paradigm, the system achieves 90.24% classification accuracy over nine gestures (16 channels @4kSPS) while requiring only 16mW of power (57h of continuous operation) when deployed on Mr. Wolf MCU, part of the system architecture. The system can also provide up to 14h of real-time data streaming (4kSPS), which can further be extended to 23h when reducing the sampling rate to 1kSPS. Our results also demonstrate that this design outperforms many features of current state-of-the-art systems. Clinical Relevance - This work establishes that BioWolf16 is a wearable ultra-low power device enabling advanced multi-channel streaming and processing of medical-grade EMG signal, that can expand research opportunities and applications in healthcare and industrial scenarios.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.