Background: Amyotrophic lateral sclerosis (ALS) is known to represent a collection of overlapping syndromes. Various classification systems based on empirical observations have been proposed, but it is unclear to what extent they reflect ALS population substructures. We aimed to use machine-learning techniques to identify the number and nature of ALS subtypes to obtain a better understanding of this heterogeneity, enhance our understanding of the disease, and improve clinical care.

Faghri F., Brunn F., Dadu A., Chio A., Calvo A., Moglia C., et al. (2022). Identifying and predicting amyotrophic lateral sclerosis clinical subgroups: a population-based machine-learning study. THE LANCET. DIGITAL HEALTH, 4(5), e359-e369 [10.1016/S2589-7500(21)00274-0].

Identifying and predicting amyotrophic lateral sclerosis clinical subgroups: a population-based machine-learning study

D'Alfonso S.;Fini N.;Meletti S.;Liguori R.;Vacchiano V.;Cortelli P.;Codeluppi L.;De Pasqua S.;
2022

Abstract

Background: Amyotrophic lateral sclerosis (ALS) is known to represent a collection of overlapping syndromes. Various classification systems based on empirical observations have been proposed, but it is unclear to what extent they reflect ALS population substructures. We aimed to use machine-learning techniques to identify the number and nature of ALS subtypes to obtain a better understanding of this heterogeneity, enhance our understanding of the disease, and improve clinical care.
2022
Faghri F., Brunn F., Dadu A., Chio A., Calvo A., Moglia C., et al. (2022). Identifying and predicting amyotrophic lateral sclerosis clinical subgroups: a population-based machine-learning study. THE LANCET. DIGITAL HEALTH, 4(5), e359-e369 [10.1016/S2589-7500(21)00274-0].
Faghri F.; Brunn F.; Dadu A.; Chio A.; Calvo A.; Moglia C.; Canosa A.; Manera U.; Vasta R.; Palumbo F.; Bombaci A.; Grassano M.; Brunetti M.; Casale F...espandi
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S2589750021002740-main.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 1.45 MB
Formato Adobe PDF
1.45 MB Adobe PDF Visualizza/Apri
ScienceDirect_files_15Dec2022_09-58-49.523.zip

accesso aperto

Tipo: File Supplementare
Licenza: Licenza per accesso libero gratuito
Dimensione 4.9 MB
Formato Zip File
4.9 MB Zip File Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/889271
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 20
social impact