This work is focused on the formulation of a numerical model for prediction of flow field inside a particulate filter. More specifically, a one-dimensional mathematical model of the gas flow in a particulate trap-cell is deduced and solved numerically. The results are given in terms of velocity, pressure, and filtration velocity. In addition, the dependence of the pressure drop on the main governing parameters has been investigated. More specifically, the permeability of the porous medium and the hydraulic diameter play a fundamental role in the pressure drop

Impiombato, A.N., Biserni, C., Milani, M., Montorsi, L. (2022). Prediction Capabilities of a One-dimensional Wall-flow Particulate Filter Model. JOURNAL OF APPLIED AND COMPUTATIONAL MECHANICS, 8(1), 245-259 [10.22055/jacm.2021.38708.3270].

Prediction Capabilities of a One-dimensional Wall-flow Particulate Filter Model

Impiombato A. N.
;
Biserni C.;
2022

Abstract

This work is focused on the formulation of a numerical model for prediction of flow field inside a particulate filter. More specifically, a one-dimensional mathematical model of the gas flow in a particulate trap-cell is deduced and solved numerically. The results are given in terms of velocity, pressure, and filtration velocity. In addition, the dependence of the pressure drop on the main governing parameters has been investigated. More specifically, the permeability of the porous medium and the hydraulic diameter play a fundamental role in the pressure drop
2022
Impiombato, A.N., Biserni, C., Milani, M., Montorsi, L. (2022). Prediction Capabilities of a One-dimensional Wall-flow Particulate Filter Model. JOURNAL OF APPLIED AND COMPUTATIONAL MECHANICS, 8(1), 245-259 [10.22055/jacm.2021.38708.3270].
Impiombato, A. N.; Biserni, C.; Milani, M.; Montorsi, L.
File in questo prodotto:
File Dimensione Formato  
128.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale (CCBYNC)
Dimensione 1.06 MB
Formato Adobe PDF
1.06 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/879999
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact