For every integer a ≥ 2, we relate the K-stability of hypersurfaces in the weighted projective space P(1, 1, a, a) of degree 2a with the GIT stability of binary forms of degree 2a. Moreover, we prove that such a hypersurface is K-polystable and not K-stable if it is quasi-smooth.
Yuchen Liu, Andrea Petracci (2022). On K-stability of some del Pezzo surfaces of Fano index 2. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 54(2), 517-525 [10.1112/blms.12581].
On K-stability of some del Pezzo surfaces of Fano index 2
Andrea Petracci
2022
Abstract
For every integer a ≥ 2, we relate the K-stability of hypersurfaces in the weighted projective space P(1, 1, a, a) of degree 2a with the GIT stability of binary forms of degree 2a. Moreover, we prove that such a hypersurface is K-polystable and not K-stable if it is quasi-smooth.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
main.pdf
accesso aperto
Tipo:
Postprint
Licenza:
Licenza per accesso libero gratuito
Dimensione
1 MB
Formato
Adobe PDF
|
1 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.