For every integer a ≥ 2, we relate the K-stability of hypersurfaces in the weighted projective space P(1, 1, a, a) of degree 2a with the GIT stability of binary forms of degree 2a. Moreover, we prove that such a hypersurface is K-polystable and not K-stable if it is quasi-smooth.

Yuchen Liu, Andrea Petracci (2022). On K-stability of some del Pezzo surfaces of Fano index 2. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 54(2), 517-525 [10.1112/blms.12581].

On K-stability of some del Pezzo surfaces of Fano index 2

Andrea Petracci
2022

Abstract

For every integer a ≥ 2, we relate the K-stability of hypersurfaces in the weighted projective space P(1, 1, a, a) of degree 2a with the GIT stability of binary forms of degree 2a. Moreover, we prove that such a hypersurface is K-polystable and not K-stable if it is quasi-smooth.
2022
Yuchen Liu, Andrea Petracci (2022). On K-stability of some del Pezzo surfaces of Fano index 2. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 54(2), 517-525 [10.1112/blms.12581].
Yuchen Liu; Andrea Petracci
File in questo prodotto:
File Dimensione Formato  
main.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 1 MB
Formato Adobe PDF
1 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/865359
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact